COMUNE DI INVERUNO

NUOVO PLESSO SCOLASTICO - VIA IV NOVEMBRE

PROGETTO DEFINITIVO

UFFICIO TECNICO COMUNE DI INVERUNO

R.U.P.: Geom. Pietro Tiberti Progettista: Arch. Claudia Soldati

CONSULENTE SCIENTIFICO:

Politecnico di Milano - Dipartimento ABC

Titolo progetto di ricerca:

Individuazione di un nuovo modello di scuola innovativa ad alta efficienza

tecnologica-energetica con l'applicazione della metodologia BIM

RESPONSABILE SCIENTIFICO:

prof. Tomaso Monestiroli

GRUPPO DI LAVORO:

Prof. Maurizio Acito

Prof. Giuseppe Martino Di Giuda

Prof. Paolo Oliaro

Prof. Franco Guzzetti

Arch. Francesco Menegatti

Arch. Luca Cardani

Arch. Alberto Cariboni

Ing. Vito Lavermicocca

Ing. Mariagrazia Calia

Ing. Agata Consoli

BIMGroup: Ing. Marco Schievano, Ing. Francesco Paleari, Ing. Elena Seghezzi

CONSULENTE SCIENTIFICO:

Università degli studi di Milano Bicocca

Dipartimento di Scienze Umane per la Formazione "Riccardo Massa"

RESPONSABILE SCIENTIFICO:

Prof.ssa Elisabetta Nigris

GRUPPO DI LAVORO:

Prof.ssa Barbara Balconi

Prof.ssa Luisa Zecca

Prof.ssa Ambra Cardani

Oggetto:

Progetto impianti meccanici – Relazione ex L10/91

Tavola n°:

IM – RC02

Comune di Inveruno - (MI)

RELAZIONE TECNICA

Attestante la rispondenza alle prescrizioni in materia di contenimento del consumo energetico degli edifici

EDIFICIO:	Realizzazione del nuovo plesso scolastico di Inveruno - Via IV Novembre - Scuola Media
INDIRIZZO	, Inveruno (MI)
COMMITTENTE:	Comune di Inveruno
PROGETTISTA:	Ing. Paolo Oliaro
	Firma:

Egregio Signor Sindaco del comune di Inveruno, (MI) e per conoscenza all'Ufficio Tecnico del comune di Inveruno, (MI)

RELAZIONE TECNICA DI CUI AL COMMA 1 DELL'ARTICOLO 8 DEL DECRETO LEGISLATIVO 19 AGOSTO 2005, N. 192, ATTESTANTE LA RISPONDENZA ALLE PRESCRIZIONI IN MATERIA DI CONTENIMENTO DEL CONSUMO ENERGETICO DEGLI EDIFICI

Nuove costruzioni, ristrutturazioni importanti di primo livello, edifici ad energia quasi zero

Un edificio esistente è sottoposto a ristrutturazione importante di primo livello quando l'intervento ricade nelle tipologie indicate al paragrafo 1.4.1, comma 3, lettera a) dell'Allegato 1 del decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005.

1 INFORMAZIONI GENERALI			
Comune di Inveruno	Provincia MI		
Progetto per la realizzazione di			
Realizzazione del nuovo plesso scolastico di Inveruno - Via	IV Novembre - Scuola Media		
X Edificio pubblico			
X Edificio ad uso pubblico			
Sito in			
Mappale			
Sezione			
Foglio			
Particella			
Subalterni			
Richiesta Permesso di Costruire	Del		
Permesso di Costruire	Del		
Variante Permesso di Costruire	Del		
Classificazione dell'edificio (o del complesso di edifici) in base a decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/categorie differenti, specificare le diverse categorie)			
E.7 attività scolastiche a tutti i livelli e assimilabili			
Numero delle unità immobiliari 1			
Soggetti coinvolti			
Committente	Comune di Inveruno		
Progettista degli impianti termici	Arch. Claudia Soldati		
Progettista dell'isolamento termico dell'edificio	Arch. Claudia Soldati		
Progettista del sistema di ricambio dell'aria dell'edificio	Arch. Claudia Soldati		
Direttore dei lavori per l'isolamento termico dell'edificio			
Direttore dei lavori per la realizzazione degli impianti termici			
Direttore dei lavori del sistema di ricambio dell'aria dell'edificio			
Progettista dei sistemi di illuminazione dell'edificio	Arch. Claudia Soldati		

Direttore dei lavori dei sistemi di illuminazione dell'edificio	
Tecnico incaricato per la redazione dell'APE	

2 FATTORI TIPOLOGICI DELL'EDIFICIO

Seleziona gli elementi tipologici da fornire, al solo scopo di supportare la presente rela	azione tecnica:			
X Piante di ciascun piano degli edifici con orientamento e indicazione d'uso prevale definizione degli elementi costruttivi	ente dei singoli locali e			
Prospetti e sezioni degli edifici con evidenziazione dei sistemi di protezione solare elementi costruttivi	Prospetti e sezioni degli edifici con evidenziazione dei sistemi di protezione solare e definizione degli elementi costruttivi			
Elaborati grafici relativi ad eventuali sistemi solari passivi specificatamente progettati per favorire lo sfruttamento degli apporti solari				
3 PARAMETRI CLIMATICI DELLA LOCALITÀ				
Gradi giorno (della zona d'insediamento, determinati in base al DPR 412/93) GG	2609			
Temperatura minima di progetto (dell'aria esterna norma UNI 5364 e succ agg.) K	268,1			
Temperatura massima estiva di progetto dell'aria esterna secondo norma	303,8			

4 DATI TECNICI E COSTRUTTIVI DELL'EDIFICIO (O DEL COMPLESSO DI EDIFICI) E DELLE RELATIVE STRUTTURE

Climatizzazione invernale

Unità immobiliare	S [m ²]	V [m ³]	S/V	Su [m ²]
Scuola Inveruno	11.882,49	25.564,80	0,46	4.316,5 6

S Superficie disperdente che delimita il volume climatizzato

V Volume delle parti di edificio climatizzate al lordo delle strutture che li delimitano

S/V rapporto tra superficie disperdente e volume lordi o fattore di forma dell'edificio

Su superficie utile climatizzata dell'edificio

Unità immobiliare	Zona climatizzata	Tinv [°C]	φinv [%]
Scuola Inveruno	A. Scuola media	20,0	50
Scuola Inveruno	Refettorio	20,0	50
Scuola Inveruno	Palestra	20,0	50

Tinv Valore di progetto della temperatura interna invernale φinv valore di progetto dell'umidità relativa interna per la climatizzazione invernale

Unità immobiliare	Presenza contabilizzazione	Metodo
Scuola Inveruno		-

Climatizzazione estiva

Unità immobiliare	S [m ²]	V [m ³]	Su [m ²]
Scuola Inveruno	11.882,49	25.564,80	4.316,5 6

S Superficie disperdente che delimita il volume climatizzato

V Volume delle parti di edificio climatizzate al lordo delle strutture che li delimitano

Su Superficie utile climatizzata dell'edificio

Unità immobiliare	Zona climatizzata	Test [°C]	φest [%]
Scuola Inveruno	A. Scuola media	26,0	50
Scuola Inveruno	Refettorio	26,0	50
Scuola Inveruno	Palestra	26,0	50

Test Valore di progetto della temperatura interna estiva Φest Valore di progetto dell'umidità relativa interna estiva

Produzione di energia elettrica

Unità immobiliare	Presenza contabilizzazione	Metodo
Scuola Inveruno		-

Informazioni generali e prescrizio	ni			
Presenza di reti di teleriscaldamente	o/raffreddamento a men	o di 1000	m [] Si	[x] No
Se "sì" descrivere le opere edili ed impi opere inserire la motivazione:	antistiche previste necessa	arie al colleg	gamento alle re	ti. Se non sono state predisposte
Livello di automazione per il control termici (BACS), classe (min = class			le tecnologie	dell'edificio e degli impianti
Adozione di materiali ad elevata rifle	ettenza solare per le cop	perture:	[]Si [x	ː] No
Valore di riflettenza solare 0	> 0,65 per co	perture pia	ane	
Valore di riflettenza solare 0	> 0.30 per co	perture a f	alda	
Se "no" riportare le ragioni tecnico-ecor	nomiche che hanno portato	o al non utiliz	zzo dei materia	li riflettenti
Adozione di tecnologie di climatizza	azione passiva per le co	perture	[x] Si [] No
Se "no" riportare le ragioni tecnico-ecor	nomiche che hanno portato	al non utiliz	ZZO:	
Sulla copertura della scuola è pre	evista la realizzazione	di una cop	pertura verde).
Adozione di misuratori d'energia (E	nergy Meter) [x] Si	[] No		
Se "sì" descrizione e caratteristiche prir	ncipali			
Adozione di sistemi di contabilizzaz	ione diretta del calore	[] Si	[x] No	
Adozione di sistemi di contabilizzaz	ione diretta del freddo	[] Si	[x] No	
Adozione di sistemi di contabilizzaz	ione diretta dell'ACS	[] S i	[x] No	
Se "no" riportare le ragioni tecnico-economiche che hanno portato al non utilizzo e definire quale sistema di contabilizzazione è stato utilizzato:				
Utilizzazione di fonti di energia rinnovabili per la copertura dei consumi di calore, di elettricità e per il raffrescamento secondo i principi minimi di integrazione, le modalità e le decorrenze di cui all'allegato 3, del decreto legislativo 3 marzo 2011, n. 28.				
Produzione di energia termica Indicare la % di copertura tramite il ricorso ad energia prodotta da impianti alimentati da fonti rinnovabili, dei consumi previsti per:			ti da fonti rinnovabili, dei	
Acqua Calda Sanitaria 73,4%				
Climatizzazione invernale, Acqua Calda Sanitaria, Climatizzazione estiva 72,8%				

Indicare la potenza elettrica deg Superficie in pianta dell'edificio	•	onti rinnovabili: 2.965,00 m ²	
Potenza Elettrica P=(1/K)*S	65,23 kW		
Descrizione e potenza degli impianti alimentati da fonti rinnovabili:			
Adozione sistemi di regolazione da impianti di climatizzazione in	•	ratura ambiente singoli locali o nelle zone termiche servite	
Adozione sistemi di compensazione nelle zone termiche servite da		olazione automatica della temperatura ambiente singoli locali one invernale:	
Se "no" documentare le ragioni tec	niche che hanno portato ali	a non utilizzazione	

Valutazione sull'efficacia dei sistemi schermanti delle superfici vetrate sia esterni che interni presenti: (vedi allegati alla relazione tecnica)

Verifiche di cui alla lettera b) del punto 3.3.4 del decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005

Tutte le pareti opache verticali ad eccezione di quelle comprese nel quadrante nord-ovest/nord/nord-est: **Valore di Massa superficiale**

Elemento edilizio	M Sup [Kg/m ²]	Limite [Kg/m ²]	Verifica
Verifica non richiesta			

Valore del modulo della trasmittanza termica periodica YIE

Elemento edilizio	YIE [W/m²κ]	Limite [W/m ² K]	Verifica
Verifica non richiesta			

Verifiche di cui alla lettera c) del punto 3.3.4 del decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005

5 DATI RELATIVI AGLI IMPIANTI

5.1 Impianti termici

Impianto tecnologico destinato ai servizi di climatizzazione invernale e/o estiva e/o produzione di acqua calda sanitaria, indipendentemente dal vettore energetico utilizzato.

a) Descrizione impianto

Tipologia

Impianto idronico servito da generatori a pompa di calore acqua-acqua collegati ad un pozzo di presa ed uno di resa. I terminali di emissione sono pannelli radianti a soffitto per i locali scolastici, pannelli radianti a pavimento per la palestra e ventilconvettori per il refettorio.

Sistemi di generazione

Due pompe di calore acqua-acqua per la climatizzazione invernale ed estiva e pompe di calore aria-acqua per la produzione di acqua calda sanitaria.

Sistemi di termoregolazione

Presente

Sistemi di contabilizzazione dell'energia termica

Sono previsti contacalorie con contatore volumetrico della portata e sonde di temperatura sulle linee di mandata e ritorno del circuito primario

Sistemi di distribuzione del vettore termico

Rete di tubazione in acciaio nero o multistrato con isolamento conforme al DPR 412/93

Sistemi di ventilazione forzata

E' previsto un sistema di ventilazione meccanica con recupero di calore che garantisce in tutti i locali le portate richieste dalla norma UNI10339.

Sistemi di accumulo termico

Sono presenti in centrale termica due accumuli caldi/freddi. Uno da 1500 litri e l'altro da 500 litri.

Sistemi di produzione dell'acqua calda sanitaria

Sistema a pompa di calore aria-acqua con serbatoio da 80 litri per la scuola e da 270 litri per la palestra.

Sistemi di distribuzione dell'acqua calda sanitaria

Tubazione in multistrato.

Trattamento di condizionamento chimico per l'acqua (norma UNI 8065)

Presente

Durezza dell'acqua di alimentazione dei generatori di calore

Filtro di sicurezza

Presente

b) Specifiche dei generatori di energia

Installazione di un contatore del volume di acqua calda sanitaria	[] Si	[x] No		
Installazione di un contatore del volume di acqua di reintegro dell'im	pianto	[] Si	[x] No	

POMPA DI CALORE

Daikin - EWWH335VZXSA1 Daikin - EWWH335VZXSA1

Pompa di calore	X elettrica	- a gas					
Tipo di pompa di calore (ambiente este	erno/interno)	Acqua di falda, fiume, mare	o lago - Acqua				
Lato esterno (specificare aria/acqua/si	Lato esterno (specificare aria/acqua/suolo - sonde orizzontali/ suolo - sonde verticali/altro):						
Fluido lato utenze (specificare aria/acqua/altro) Acqua							

Potenza termica utile riscaldamento [kW]

Il dato è in funzione delle temperature di pozzo caldo e sorgente fredda

Ts,fredda	Tpozzo caldo						
[°C]	35,00	45,00	55,00	-	-	-	-
15,0	427,170	409,050	386,980	-	-	-	-

Potenza elettrica assorbita 1.500,00 W

Coefficiente di prestazione (COP)

Il dato è in funzione delle temperature di pozzo caldo e sorgente fredda

	Ts,fredda	Tpozzo caldo						
	[°C]	35,00	45,00	55,00	-	-	-	-
Ī	15,0	6,962	5,400	4,208	-	-	-	-

POMPA DI CALORE

Daikin - EWWQ180L-SS Daikin - EWWQ180L-SS

Pompa di calore X elettrica - a gas								
	npa di calore (ar		· ·		da, fiume, ma		cqua	
Lato estern	no (specificare a	ria/acqua/suolc	o - sonde oriz	zzontali/ suolo -	- sonde vertica	ıli/altro):		
Fluido lato	utenze (specific	are aria/acqua/	/altro) Ac	qua				
	rmica utile risc nzione delle tempe			e fredda				
Ts,fredda	Ts,fredda Tpozzo caldo							
[°C]	35,00	45,00	55,00	-	-	-	-	
15,0	246,430	233,550	218,920	-	-	-	-	
Potenza el	ettrica assorbita		1.5	500,00 W				
1 0101124 01	otti ioa accorbita			700,00 11				
	te di prestazion		alda a aargant	to fradda				
II dato e III iui	nzione delle tempe	rature di pozzo c	aldo e sorgeni	e iredda				
Ts,fredda	Tpozzo caldo							
[°C]	35,00	45,00	55,00	-	-	-	-	
15,0	5,808	4,625	3,649	-	-	-	-	
POMPA DI ARISTON	CALORE THERMO GROU	JP - NUOS EV	/O 80					
Pompa di d	alore	X	elettrica	-	a gas			
Tipo di pon	npa di calore (ar	nbiente esterno	o/interno)	Aria interna	dipendente d	lal clima - Acc	qua	
Lato estern	no (specificare a	ria/acqua/suolo	o - sonde oriz	zontali/ suolo -	sonde vertica	ıli/altro):		
Fluido lato	utenze (specific	are aria/acqua/	/altro) Ac	qua		_		
	rmica utile risc nzione delle tempe			e fredda				
Ts,fredda	Tpozzo caldo							
[°C]	35,00	45,00	-	-	-	-	-	
7,0	0,572	0,572	-	-	-	-	-	
15,0	0,665	0,665	-	-	-	-	-	
20,0	0,680	0,680	-	-	-	-	-	
35,0	0,862	0,862	-	-	-	-	-	

Potenza elettrica assorbita 0,00 W

Coefficiente di prestazione (COP) Il dato è in funzione delle temperature di pozzo caldo e sorgente fredda

Ts,fredda	Tpozzo caldo									
[°C]	35,00	45,00	-	-	-	-	-			
7,0	2,720	2,720	-	-	-	•	-			
15,0	2,660	2,660	-	-	-	•	-			
20,0	2,720	2,720	-	-	-	•	-			
35,0	3,450	3,450	-	-	-	-	-			

POMPA DI CALORE

ARISTON 1	THERMO GROU	JP - NUOS EV	O 80					
Pompa di c	alore	X	elettrica	-	a gas			
Tipo di pon	npa di calore (ar	nbiente esterno	o/interno)	Aria interna	dipendente d	lal clima - Acc	qua	
Lato estern	o (specificare a	ria/acqua/suolo	- sonde oriz	zzontali/ suolo -	sonde vertica	li/altro):		
Fluido lato	utenze (specific	are aria/acqua/	/altro) Ac	qua		_		
	rmica utile risc nzione delle tempe			te fredda				
Ts,fredda	Tpozzo caldo	1						
[°C]	35,00	45,00	-	-	-	-	-	
7,0	0,572	0,572	-	-	-	-	-	•
15,0	0,665	0,665	-	-	-	-	-	
20,0	0,680	0,680	-	-	-	-	-	
35,0	0,862	0,862	-	-	-	-	-	
Potenza ele	ettrica assorbita		0,0	00 W				
	e di prestazion nzione delle tempe		aldo e sorgent	te fredda				
Ts,fredda	Tpozzo caldo							
[°C]	35,00	45,00	-	-	-	-	-	
7,0	2,720	2,720	-	-	-	-	-	
15,0	2,660	2,660	-	-	•	•		
20,0	2,720	2,720	-	-	•	•	-	•
35,0	3,450	3,450	-	-	-	-	-	-
POMPA DI ARISTON T	CALORE THERMO GROU	JP - palestra -						
Pompa di d	alore	X	elettrica	-	a gas			
Tipo di pon	npa di calore (ar	nbiente esterno	o/interno)	Aria interna	dipendente d	lal clima - Ac	qua	
Lato estern	o (specificare a	ria/acqua/suolo	- sonde oriz	zzontali/ suolo -	sonde vertica	li/altro):		
Fluido lato	utenze (specific	are aria/acqua/	altro) Ac	qua				
	rmica utile risc nzione delle tempe			te fredda				
Ts,fredda	Tpozzo caldo							
[°C]	35,00	45,00	-	-	-	-		
15,0	1,670	1,670	-	-	-	-	-	•
20,0	1,670	1,670	-	-	-	-	-	•
	Potenza elettrica assorbita O,00 W Coefficiente di prestazione (COP)							

Coefficiente di prestazione (COP)
Il dato è in funzione delle temperature di pozzo caldo e sorgente fredda

Ts,fredda Tpozzo caldo

[°C]	35,00	45,00	-	-	-	-	-
15,0	3,700	3,700	-	-	-	-	-
20,0	3,700	3,700	-	-	-	-	-

POMPA DI CALORE

ARISTON THERMO GROUP - palestra - - -

Pompa di calore	X elettrica	- a gas					
Tipo di pompa di calore (ambiente est	erno/interno)	Aria interna dipendente dal clima - Acqua					
Lato esterno (specificare aria/acqua/s	Lato esterno (specificare aria/acqua/suolo - sonde orizzontali/ suolo - sonde verticali/altro):						
Fluido lato utenze (specificare aria/acqua/altro) Acqua							

Potenza termica utile riscaldamento [kW]

Il dato è in funzione delle temperature di pozzo caldo e sorgente fredda

Ts,fredda	Tpozzo caldo						
[°C]	35,00	45,00	-	-	-	-	-
15,0	1,670	1,670	-	-	-	-	-
20,0	1,670	1,670	-	-	-	-	-

Potenza elettrica assorbita 0,00 W

Coefficiente di prestazione (COP)

Il dato è in funzione delle temperature di pozzo caldo e sorgente fredda

Ts,fredda	Tpozzo caldo						
[°C]	35,00	45,00	-	-	-	-	-
15,0	3,700	3,700	-	-	-	-	-
20,0	3,700	3,700	-	-	-	-	-

MACCHINA FRIGORIFERA

DAIKIN - EWWH335VZXSA1 DAIKIN - EWWH335VZXSA1

Tipo di pompa di calore (ambiente esterno/interno) Acqua di falda, fiume, mare o lago/Acqua

Temperatura dell'acqua in uscita: 7,00

Temperatura di ingresso dell'acqua al condensatore:30,00

Funzionamento pompa

Funzionamento pompa

Raffrescamento

POTENZE E PRESTAZIONI

per macchina frigorifera elettrica:

Fattore di carico	EER
100 %	5,67
75 %	6,99
50 %	8,61
25 %	9,37

Per macchina frigorifera ad assorbimento

GUE -	
Potenza nominale 370,2 kW	
Potenza elettrica assorbita 0,00 W	
MACCHINA FRIGORIFERA DAIKIN - EWWQ180L-SS DAIKIN - EWWQ180L	-ss
Tipo di pompa di calore (ambiente esterno/interno	o) Acqua di falda, fiume, mare o lago/Acqua
Temperatura dell'acqua in uscita: 7,00	
Temperatura di ingresso dell'acqua al conden	satore:30,00
Funzionamento pompa Energia elettrica	
Funzionamento pompa Raffrescamento	
POTENZE E PRESTAZIONI per macchina frigorifera elettrica:	
Fattore di carico EER	
100 % 4,76	
75 % 5,58	
50 % 6,86	
25 % 8,03	
Per macchina frigorifera ad assorbimento GUE	
Potenza nominale 203,9 kW	
Potenza elettrica assorbita 0,00 W	
macchine diverse da quelle sopra descritte, le pre	acqua calda sanitaria, che utilizzano, in tutto o in parte, estazioni di dette macchine sono fornite utilizzando le ura, e applicando, ove esistenti, le vigenti norme tecniche.
c) Specifiche relative ai sistemi di regolazion	e dell'impianto termico
Tipo di conduzione invernale prevista:	
Continua con attenuazione notturna	
X Intermittente	
Tipo di conduzione estiva prevista:	
Continua con attenuazione notturna	
X Intermittente	
Sistema di gestione dell'impianto termico	
Quadro comandi di centrale	
Sistema di regolazione climatica in centrale termi	ca (solo per impianti centralizzati)
Centralina climatica Presente	
Numero dei livelli di programmazione della tempe	eratura nelle 24 ore continua
Regolatori climatici e dispositivi per la regolazione singole zone o unità immobiliari:	e automatica della temperatura ambiente nei singoli locali o nelle
Denominazione	Regulazione II Descrizione I ivelli

U.I.1-A. Scuola media	SIH1 Idronico	Per singolo ambiente + climatica	1	Modulazione della temperatura di mandata	continua
U.I.1-Refettorio	SIH1 Idronico	Per singolo ambiente + climatica	1	Modulazione della temperatura di mandata	continua
U.I.1-Palestra	SIH1 Idronico	Per singolo ambiente + climatica	1	Modulazione della temperatura di mandata	continua

N: numero apparecchi

Livelli: Numero di livelli di programmazione nelle 24 ore

d) Dispositivi per la contabilizzazione del calore/freddo nelle singole unità immobiliari (solo per impianti centralizzati)

Per Climatizzazione inve Numero di apparecchi Descrizione sintetica disp	0	-		
Per Acqua Calda Sanita	ria			
Numero di apparecchi	0	_		
Descrizione sintetica disp	ositivo			
Per Climatizzazione esti	va			
Numero di apparecchi	0	_		
Descrizione sintetica disp	ositivo			

e) Terminali di erogazione dell'energia termica

Elenco dei terminali di erogazione dell'unità immobiliare

Denominazione		N	Tipologia	P [W]
U.I.1-A. Scuola media	SIH1 Idronico		Pannelli annegati a soffitto	227.630,0
U.I.1-Refettorio	SIH1 Idronico		Ventilconvettori	98.209,8
U.I.1-Palestra	SIH1 Idronico		Pannelli annegati a pavimento	35.237,5

N Numero di apparecchi

P Potenza installata

f) Condotti di evacuazione dei prodotti della combustione

Descrizione e caratteristiche principali

Non previsti, in quanto i generatori sono pompe di calore elettriche.

g) Sistemi di trattamento dell'acqua (tipo di trattamento)

Descrizione e caratteristiche principali

Trattamento mediante addolcitore, dosatore polisosfati e trattamento antilegionella

h) Specifiche dell'isolamento termico della rete di distribuzione

i) Schemi funzionali degli impianti termici In allegato sono inseriti schemi unifilari di impianto termico con specificato Posizionamento e la potenze dei terminali di erogazione – Allegato Posizionamento e tipo dei generatori - Allegato Posizionamento e tipo degli elementi di distribuzione - Allegato Posizionamento e tipo degli elementi di controllo - Allegato Posizionamento e tipo degli elementi di sicurezza - Allegato 5.2 Impianti fotovoltaici [X] Si Nella modellazione dell'edificio sono presenti impianti fotovoltaici [] No Descrizione con caratteristiche tecniche e schemi funzionali (vedi allegati alla relazione tecnica) 5.3 Impianti solari termici Nella modellazione dell'edificio sono presenti impianti solari termici [] Si [X] No Descrizione con caratteristiche tecniche e schemi funzionali (vedi allegati alla relazione tecnica) 5.4 Impianti di illuminazione Nella modellazione dell'edificio sono presenti impianti di illuminazione [X] Si [] No Descrizione con caratteristiche tecniche e schemi funzionali (vedi allegati alla relazione tecnica) 5.5 Altri impianti Altri impianti dell'edificio [X] Si [] No Descrizione con caratteristiche tecniche e schemi funzionali **Ascensore** Livello minimo di efficienza dei motori elettrici per ascensori e scale mobili IE3 6 PRINCIPALI RISULTATI DEI CALCOLI Si dichiara che l'edificio oggetto della presente relazione può essere definito "edificio ad energia quasi zero" in quanto sono contemporaneamente rispettati tutti i requisiti previsti dalla lettera b), del comma 2, del paragrafo 3.3 del decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005, secondo i valori vigenti dal 1° gennaio 2019 per gli edifici pubblici e dal 1° gennaio 2021 per tutti gli altri edifici; gli obblighi di integrazione delle fonti rinnovabili nel rispetto dei principi minimi di cui all'allegato 3, paragrafo 1, lettera c), del decreto legislativo 3 marzo 2011, n.28. g) Involucro edilizio e ricambi d'aria Trasmittanza termica degli elementi divisori tra alloggi o unità immobiliari confinanti; confronto con i valori limite: (vedi allegati alla relazione tecnica). Verifica termoigrometrica: (vedi allegati alla relazione tecnica). Numero di ricambi d'aria (media nelle 24 ore): (vedi allegati alla relazione tecnica). Portata d'aria di ricambio solo nei casi di ventilazione meccanica controllata: (vedi allegati alla relazione tecnica). Portata dell'aria circolante attraverso apparecchiature di recupero del calore disperso: (vedi allegati alla relazione Rendimento termico delle apparecchiature di recupero del calore disperso: (vedi allegati alla relazione tecnica).

Tipologia, conduttività termica, spessore (vedi allegati alla relazione tecnica)

h) Indici di prestazione energetica per la climatizzazione invernale ed estiva, per la produzione di acqua calda sanitaria, per la ventilazione e l'illuminazione

Determinazione dei seguenti indici di prestazione energetica, espressi in kWh/m² anno, così come definiti al paragrafo 3.3 dell'Allegato 1 del decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005, rendimenti e parametri che ne caratterizzano l'efficienza energetica.

Verifica coefficiente medio globale di scambio termico per trasmissione

Unità immobiliare	H'T [W/(m ² K)]	Limite	Verifica
Scuola Inveruno	0,230	0,55	SI

H'T: Coefficiente medio globale di scambio termico per trasmissione per unità di superficie disperdente (Tabella 10 appendice A)

Verifica area solare equivalente estiva dei componenti finestrati

Unità immobiliare	A _{sol,est} /A _{sup,utile}	Limite	Verifica
Scuola Inveruno	0,022	0,04	SI
Verifica Indice di prestazione termica utile	e		
Indice di prestazione termica utile per la clim	atizzazione invernale EPH,no	d 95,26	kWh/m²
Indice di prestazione termica utile per la clim	atizzazione invernale calcola	to	
nell'edificio di riferimento EPH,nd,limite:		125,18	kWh/m²
Verifica: Si			
Indice di prestazione termica utile per la clim	atizzazione estiva EPC,nd	1,30	kWh/m²
Indice di prestazione termica utile per la clim	atizzazione estiva calcolato		
nell'edificio di riferimento EPC,nd,limite:		1,60	kWh/m²
Verifica: Si			
Verifica Indice di prestazione energetica	globale dell'edificio		
Indice della prestazione energetica globale d		nia	
primaria non rinnovabile EPgI,nr	, ,	42,92	kWh/m²
Indice della prestazione energetica globale d	dell'edificio EPgl,tot	109,30	kWh/m²
Indice di prestazione energetica globale dell	'edificio calcolato nell'edificio	di	
riferimento EPgl,tot,limite:		211,03	kWh/m²
Verifica: Si			
Verifica Efficienza media stagionale			
Efficienza media stagionale dell'impianto di i	riscaldamento ηH	1,661	
Efficienza media stagionale dell'impianto di	riscaldamento calcolato		
nell'edificio di riferimento ηΗ,limite		0,945	
Verifica: Si			
Efficienza media stagionale dell'impianto di p	oroduzione di ACS ηW:	0,720	
Efficienza media stagionale dell'impianto di i	riscaldamento calcolato		
nell'edificio di riferimento ηW,limite		0,454	
Verifica: Si			
Efficienza media stagionale dell'impianto di i	•	0,518	
Efficienza media stagionale dell'impianto di i	raffrescamento calcolato		
nell'edificio di riferimento ηΗ,limite		0,189	

Verifica:

Impianti solari termici per la produzione di acqua calda sanitaria Tipo collettore Tipo installazione Descrizione tipo installazione (se altro) Tipo supporto Descrizione tipo supporto (se altro) Inclinazione Orientamento Capacità accumulo **0** I Impianto integrazione (specificare tipo e alimentazione) Percentuale copertura fabbisogno annuo 0,0 % Impianti fotovoltaici Connessione impianto: **Grid connected** Tipo moduli Silicio monocristallino con potenza del singolo modulo pari a 360 W Tipo installazione Parzialmente integrati Descrizione tipo installazione (se altro) Tipo supporto Metallico Descrizione tipo supporto (se altro) Inclinazione 18° Orientamento 45 67,49 kW Potenza installata Percentuale copertura fabbisogno annuo 47,27 %

e) Consuntivo energia

Energia prodotta in sito

Vettore energetico	Udm	Qdel
Energia elettrica da solare fotovoltaico	Н	8.706,67
Energia elettrica da solare fotovoltaico	w	517,58
Energia elettrica da solare fotovoltaico	С	7.573,04
Energia elettrica da solare fotovoltaico	L	27.336,12
Energia elettrica da solare fotovoltaico	V	40.736,78
Energia elettrica da solare fotovoltaico	Т	315,69
Energia termica da solare termico	Н	0,00
Energia termica da solare termico	W	0,00
Energia termica da solare termico	С	0,00
Energia termica da solare termico	L	0,00
Energia termica da solare termico	V	0,00
Energia termica da solare termico	Т	315,69

Energia consegnata dall'esterno

Vettore energetico	Udm	Qdel
--------------------	-----	------

Energia elettrica da rete	Н	34.664,21
Energia elettrica da rete	W	451,77
Energia elettrica da rete	С	1.352,75
Energia elettrica da rete	L	23.400,02
Energia elettrica da rete	V	34.872,53
Energia elettrica da rete	Т	270,24

Energia esportata

Vettore energetico	Udm	Qdel
Energia elettrica da rete	н	0,00
Energia elettrica da rete	W	0,00
Energia elettrica da rete	С	0,00
Energia elettrica da rete	L	0,00
Energia elettrica da rete	V	0,00
Energia elettrica da rete	Т	0,00

Energia primaria

Indice di prestazione rinnovabile diviso per servizio

Servizio	EPren [kWh/m²]
Н	41,70
W	0,56
С	1,90
L	8,88
V	13,23
Т	0,10

Indice di prestazione non rinnovabile diviso per servizio

Servizio	EPnren [kWh/m²]
Н	15,66
W	0,20
С	0,61
L	10,57
V	15,75
T	0,12

Indice di prestazione globale diviso per servizio

Servizio	EPnren [kWh/m²]
Н	57,36
W	0,77
С	2,51
L	19,45
V	28,99
Т	0,22

f) Valutazione della fattibilità tecnica, ambientale ed economica per l'inserimento di sistemi ad alta efficienza

Vedi allegati alla relazione tecnica

7 ELEMENTI SPECIFICI CHE MOTIVANO EVENTUALI DEROGHE A NORME FISSATE DALLA

NORMATIVA VIGENTE		

8 DOCUMENTAZIONE ALLEGATA Piante di ciascun piano degli edifici con orientamento e indicazione d'uso prevalente dei singoli locali e definizione degli elementi costruttivi. Prospetti e sezioni degli edifici con evidenziazione dei sistemi fissi di protezione solare e definizione degli elementi costruttivi. Elaborati grafici relativi ad eventuali sistemi solari passivi specificatamente progettati per favorire lo sfruttamento degli apporti solari. Schemi funzionali degli impianti contenenti gli elementi di cui all'analoga voce del paragrafo 'Dati relativi agli impianti punto 5.1 lettera i' e dei punti 5.2, 5.3, 5.4, 5.5 Tabelle con indicazione delle caratteristiche termiche, termo igrometriche e della massa efficace dei componenti opachi dell'involucro edilizio con verifica dell'assenza di rischio di formazione di muffe e di condensazioni interstiziali. Tabelle con indicazione delle caratteristiche termiche, termo igrometriche e della massa efficace della loro permeabilità all'aria. Schede con indicazione della valutazione della fattibilità tecnica, ambientale ed economica per l'inserimento di sistemi alternativi ad alta efficienza. Schede con indicazione della valutazione della fattibilità tecnica, ambientale ed economica per l'inserimento Altri eventuali allegati non obbligatori: 9 DICHIARAZIONE DI RISPONDENZA Il sottoscritto Ing. Paolo Oliaro, iscritto a Ordine degli Ingegneri di Milano, nº 24252, essendo a conoscenza delle sanzioni previste dall'articolo 15, commi 1 e 2, del decreto legislativo 192/2005 **DICHIARA** sotto la propria personale responsabilità che: a) il progetto relativo alle opere di cui sopra è rispondente alle prescrizioni contenute dal decreto legislativo 192/2005 nonché dal decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005; b) il progetto relativo alle opere di cui sopra rispetta gli obblighi di integrazione delle fonti rinnovabili secondo i principi minimi e le decorrenze di cui all'allegato 3, paragrafo 1, lettera c), del decreto legislativo 3 marzo 2011, n.28: c) i dati e le informazioni contenuti nella relazione tecnica sono conformi a quanto contenuto o desumibile dagli elaborati progettuali Data Firma

17/01/2020

PROGETTO DELL'ISOLAMENTO

Il calcolo di progetto per l'isolamento dell'involucro dell'edificio ed il conseguente calcolo del carico termico di progetto è condotto in conformità alla UNI EN 12381 – 2006.

COEFFICIENTI DI DISPERSIONE

Di seguito si riportano gli elementi che costituiscono l'involucro del sistema edificio/impianto con i rispettivi valori di trasmittanza termica U. U' rappresenta la trasmittanza di un elemento opaco valutata comprendendo l'influenza degli eventuali ponti termici associati. A ciascuna voce viene associato il limite da normativa e l'esito della relativa verifica.

nveruno_CV01a (PA0020) nveruno_CV02a (PA0024) nveruno_CV03a (PA0025) nveruno_CV03c (PA0027) nveruno_CV05a (PA0045) nveruno_CV05a NR (PA0042) verso Centrale termica scuola media nveruno_CV05b (PA0043)	W/(m ² K) 0,195 0,206 0,153 0,184 0,209 0,206 0,209	W/(m ² K) 0,195 0,206 0,153 0,184 0,209 0,206	W/(m ² K) 0,260 0,260 0,260 0,260 0,260	SI SI
nveruno_CV02a (PA0024) nveruno_CV03a (PA0025) nveruno_CV03c (PA0027) nveruno_CV05a (PA0045) nveruno_CV05a NR (PA0042) verso Centrale termica scuola media nveruno_CV05b (PA0043)	0,206 0,153 0,184 0,209 0,206	0,206 0,153 0,184 0,209	0,260 0,260 0,260	SI SI
nveruno_CV03a (PA0025) nveruno_CV03c (PA0027) nveruno_CV05a (PA0045) nveruno_CV05a NR (PA0042) verso Centrale termica scuola media nveruno_CV05b (PA0043)	0,153 0,184 0,209 0,206	0,153 0,184 0,209	0,260 0,260	SI
nveruno_CV03c (PA0027) nveruno_CV05a (PA0045) nveruno_CV05a NR (PA0042) verso Centrale termica scuola media nveruno_CV05b (PA0043)	0,184 0,209 0,206	0,184 0,209	0,260	
nveruno_CV05a (PA0045) nveruno_CV05a NR (PA0042) verso Centrale termica scuola media nveruno_CV05b (PA0043)	0,209 0,206	0,209		
nveruno_CV05a NR (PA0042) verso Centrale termica scuola media nveruno_CV05b (PA0043)	0,206	,	0,260	SI
nveruno_CV05b (PA0043)	,	0,206		SI
	0,209	-,	∞	SI
0)(00.1)0 (0.100.10)		0,209	0,260	SI
nveruno_CV06 NR (PA0048) verso Centrale termica scuola media	2,047	2,047	∞	SI
Strutture orizzontali opache di pavimento	Trasmittanza U	Trasmittanza corretta U'	Trasmittanza limite Ulimite	Verifica
0004 (D) (2000)	W/(m ² K)	W/(m ² K)	W/(m ² K)	<u> </u>
nveruno_CO01 (PV0008)	0,043	0,043	0,260	SI
nveruno_CO03 (PV0009)	0,042	0,042	0,260	SI
nveruno_PO02 (PV0010) verso Centrale termica scuola media	0,181	0,181	∞	SI
Strutture orizzontali opache di copertura	Trasmittanza U	Trasmittanza corretta U'	Trasmittanza limite Ulimite	Verifica
00004 (000004)	W/(m ² K)	W/(m ² K)	W/(m ² K)	
nveruno_COP01a (CO0001)	0,108	0,108	0,220	SI
nveruno_COP02a (CO0002)	0,132	0,132	0,220	SI
Elementi trasparenti	Trasmittanza U	Trasmittanza limite Ulimite	Verifica	
	W/(m ² K)	W/(m ² K)		
Serramenti	Trasmittanza U	Trasmittanza limite Ulimite	Verifica	
Verifica non richiesta	W/(m ² K)	W/(m ² K)		
Partizioni interne verticali ed orizzontali	Trasmittanza U	Trasmittanza corretta U'	Trasmittanza limite Ulimite	Verifica
Verifica non richiesta	W/(m ² K)	W/(m ² K)	W/(m ² K)	
		Troomitteeee		
Strutture verso il terreno	Trasmittanza U	Trasmittanza limite Ulimite	Verifica	
Verifica non richiesta	W/(m ² K)	W/(m ² K)		
Ponti termici	Trasmittanza lineica ψi W/(mK)	Trasmittanza lineica ψοί W/(mK)	Trasmittanza lineica ψe W/(mK)	
Verifica non richiesta	VV/(IIIIX)	vv/(IIIIx)	vv/(IIIIX)	

DISPERSIONI PER TRASMISSIONE

I coefficienti di maggiorazione percentuale a seconda dell'esposizione delle strutture verticali sono valutati con riferimento alla norma UNI EN 12831 - 2006, paragrafo 6 dell'appendice NA (prospetto NA.3 a).

A. Scuola media - 10.027 Atrio - Δ9progetto = 25,0 °C

Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	ΦТ
	dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W]
ED1-2_170x260	Esterno	NW	1,15	17,68	1,400	24,75	1,00	711,94

TOTALE A. Scuola media - 10.027 Atrio 711,94

A. Scuola media - 15.020-22. Aule sinistra PT - Δ9progetto = 25,0 °C

Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	ΦТ
	dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W]
ED1-2_PT_170x260_con tenda	Esterno	NE	1,20	8,84	1,400	12,38	1,00	371,45
ED1-2_PT_170x260_con tenda	Esterno	SW	1,05	35,36	1,400	49,50	1,00	1.300,06
ED1-2_PT_170x260_con tenda	Esterno	NE	1,20	35,36	1,400	49,50	1,00	1.485,79
ED1-2_PT_170x260_con tenda	Esterno	SW	1,05	8,84	1,400	12,38	1,00	325,02

TOTALE A. Scuola media - 15.020-22. Aule sinistra PT 3.482,31

A. Scuola media - 8-9.005-8-9-10-11 Uffici - Δ9progetto = 25,0 °C

Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	ΦТ
	dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W]
ED1-2_P1_170x260_con scherm	Esterno	NW	1,15	17,68	1,400	24,75	1,00	711,94

TOTALE <u>A. Scuola media - 8-9.005-8-9-10-11 Uffici</u> 711,94

A. Scuola media - 5-14.004-16 WC - Δ9progetto = 25,0 °C

Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	ΦТ
	dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W]
ED1-2_170x85	Esterno	NE	1,20	2,89	1,400	4,05	1,00	121,43
ED1-2_170x85	Esterno	SW	1,05	2,89	1,400	4,05	1,00	106,26

TOTALE A. Scuola media - 5-14.004-16 WC 227,69

A. Scuola media - 6.018. Connettivo orizzontale - Δ9progetto = 25,0 °C

Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	ΦТ
	dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W]
ED1-2_PT_170x260_con tenda	Esterno	SW	1,05	30,94	1,400	43,32	1,00	1.137,56
ED1-2_170x260	Esterno	SE	1,10	30,94	1,400	43,32	1,00	1.191,73
ED1-2_170x260	Esterno	NE	1,20	26,52	1,400	37,13	1,00	1.114,34

TOTALE A. Scuola media - 6.018. Connettivo orizzontale 3.443,62

A. Scuola media - 28.043 Connettivo orizzont P1 - Δ9progetto = 25,0 °C

Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	ΦТ
	dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W]
ED1-2_170x260	Esterno	NW	1,15	4,42	1,400	6,19	1,00	177,98
ED1-2_PT_170x260_con tenda	Esterno	SW	1,05	30,94	1,400	43,32	1,00	1.137,56
ED1-2_P1_170x260_con scherm	Esterno	SE	1,10	30,94	1,400	43,32	1,00	1.191,73
ED1-2_170x260	Esterno	NE	1,20	26,52	1,400	37,13	1,00	1.114,34

TOTALE A. Scuola media - 28.043 Connettivo orizzont P1 3.621,61

A. Scuola media - 25-26.035-36-37-40-41-42. Aule P1 - Δ9progetto = 25.0 °C

Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	ΦТ
	dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W]
ED1-2_P1_170x260_con scherm	Esterno	NE	1,20	8,84	1,400	12,38	1,00	371,45

ED4 0 D4 470:000	F-4	CVA	4.05	0.04	4 400	40.00	4.00	205.00
ED1-2_P1_170x260_con scherm	Esterno	SW	1,05	8,84	1,400	12,38	1,00	325,02
ED1-2_P1_170x260_con scherm	Esterno	NE	1,20	35,36	1,400	49,50	1,00	1.485,79
ED1-2_P1_170x260_con scherm	Esterno	SW	1,05	35,36	1,400	49,50	1,00	1.300,06
Inveruno_CO01	Terreno	-	1,00	1.361,52	0,043	58,54	0,51	745,52
Inveruno_CO03	Terreno	-	1,00	1.264,70	0,042	53,50	0,51	681,41
Inveruno_COP01a	Esterno	-	1,00	1.345,46	0,108	145,86	1,00	3.648,25
Inveruno_COP02a	Esterno	-	1,00	151,34	0,132	20,05	1,00	501,47
Inveruno_CV01a	Esterno	NE	1,20	524,54	0,195	102,16	1,00	3.066,10
Inveruno_CV01a	Esterno	NW	1,15	73,92	0,195	14,40	1,00	414,08
Inveruno_CV01a	Esterno	SE	1,10	593,73	0,195	115,63	1,00	3.181,33
Inveruno_CV01a	Esterno	SW	1,05	357,06	0,195	69,54	1,00	1.826,24
Inveruno_CV02a	Esterno	NW	1,15	107,93	0,206	22,25	1,00	639,96
Inveruno_CV03a	Esterno	NE	1,20	334,68	0,153	51,05	1,00	1.532,24
Inveruno_CV03a	Esterno	SW	1,05	334,68	0,153	51,05	1,00	1.340,71
Inveruno_CV03c	Esterno	NW SE	1,15	136,28	0,184	25,12	1,00	722,58
Inveruno_CV03c	Esterno Centrale termica	SE	1,10	178,44	0,184	32,89	1,00	904,98
Inveruno_PO02	scuola media	-	1,00	327,28	0,181	59,27	0,00	0,00
Inveruno_CV05a NR	Centrale termica	N	1,00	3.753,34	0,206	771,33	0,00	0,00
IIIVOIGIO_O VOCATAIX	scuola media		1,00	0.700,04	0,200	771,00	0,00	0,00
TOTALE A. Scuola media - 25-26.035-36-37-40-41	-42. Aule P1							22.687,19
A. Scuola media - 31.030-31-47 Uffici + laborator	rio P1 - Δ9progetto =	25,0 °C	<u> </u>					
Elemente dispordente	\/oroo d:	0-	_	Anotto	110.00	⊔ :.,	htm.	ΦТ
Elemento disperdente	Verso di	Or	е	Anetta	U ο ψ [W/(m ² K)]	Hix	btrx	ΨΙ
	dispersione	[-]	[%]	[m ²]	[vv/(m²K)] o [W/(mK)]	[W/K]	[-]	[W]
ED1-2_P1_170x260_con scherm	Esterno	NW	1,15	35,36	0 [vv/(mk)] 1,400	49,50	1,00	1.423,88
		1444	1,10	55,50	1,700	70,00	1,00	
TOTALE A. Scuola media - 31.030-31-47 Uffici + I	aboratorio P1							1.423,88
A. Scuola media - 29-32. 044-28-32-33 WC P1 - A	\9progetto = <u>25,0 °C</u>							
Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	ΦТ
					[W/(m ² K)]			
	dispersione	[-]	[%]	[m ²]	o [W/(mK)]	[W/K]	[-]	[W]
ED1-2_170x85	Esterno	SW	1,05	2,89	1,400	4,05	1,00	106,26
ED1-2_170x85 ED1-2_170x85	Esterno Esterno	SW NE	1,05 1,20	2,89 2,89	- ` '-	4,05 4,05	1,00 1,00	106,26 121,43
					1,400	,		
ED1-2_170x85 ED1-2_170x260	Esterno Esterno	NE	1,20	2,89	1,400 1,400	4,05	1,00	121,43 177,98
ED1-2_170x85	Esterno Esterno	NE	1,20	2,89	1,400 1,400	4,05	1,00	121,43
ED1-2_170x85 ED1-2_170x260 TOTALE A. Scuola media - 29-32. 044-28-32-33 W	Esterno Esterno /C P1	NE	1,20	2,89	1,400 1,400	4,05	1,00	121,43 177,98
ED1-2_170x85 ED1-2_170x260	Esterno Esterno /C P1	NE	1,20	2,89	1,400 1,400	4,05	1,00	121,43 177,98
ED1-2_170x85 ED1-2_170x260 TOTALE A. Scuola media - 29-32. 044-28-32-33 W	Esterno Esterno VC P1 etto = 25,0 °C	NE NW	1,20	2,89	1,400 1,400 1,400	4,05	1,00	121,43 177,98
ED1-2_170x85 ED1-2_170x260 TOTALE A. Scuola media - 29-32. 044-28-32-33 W	Esterno Esterno /C P1	NE	1,20	2,89	1,400 1,400	4,05	1,00	121,43 177,98
ED1-2_170x85 ED1-2_170x260 TOTALE A. Scuola media - 29-32. 044-28-32-33 W A. Scuola media - 36.054-55 Spogliatoi - Δ9proge	Esterno Esterno VC P1 etto = 25,0 °C Verso di	NE NW	1,20 1,15	2,89 4,42 Anetta	1,400 1,400 1,400 1,400	4,05 6,19	1,00 1,00	121,43 177,98 405,67 ΦΤ
ED1-2_170x85 ED1-2_170x260 TOTALE A. Scuola media - 29-32. 044-28-32-33 W A. Scuola media - 36.054-55 Spogliatoi - Δ9proge	Esterno Esterno VC P1 etto = 25,0 °C Verso di dispersione	NE NW	1,20 1,15 e [%]	2,89 4,42 Anetta [m ²]	1,400 1,400 1,400 1,400 U o ψ [W/(m ² K)] o [W/(mK)]	4,05 6,19 Hix [W/K]	1,00 1,00	121,43 177,98 405,67 ΦT [W]
ED1-2_170x85 ED1-2_170x260 TOTALE A. Scuola media - 29-32. 044-28-32-33 W A. Scuola media - 36.054-55 Spogliatoi - Δ9proge	Esterno Esterno VC P1 etto = 25,0 °C Verso di	NE NW	1,20 1,15	2,89 4,42 Anetta	1,400 1,400 1,400 1,400	4,05 6,19	1,00 1,00	121,43 177,98 405,67 ΦΤ
ED1-2_170x85 ED1-2_170x260 TOTALE A. Scuola media - 29-32. 044-28-32-33 W A. Scuola media - 36.054-55 Spogliatoi - Δ9proge Elemento disperdente Inveruno_CV05b	Esterno Esterno VC P1 etto = 25,0 °C Verso di dispersione	NE NW	1,20 1,15 e [%]	2,89 4,42 Anetta [m ²]	1,400 1,400 1,400 1,400 U o ψ [W/(m ² K)] o [W/(mK)]	4,05 6,19 Hix [W/K]	1,00 1,00	121,43 177,98 405,67 ΦT [W]
ED1-2_170x85 ED1-2_170x260 TOTALE A. Scuola media - 29-32. 044-28-32-33 W A. Scuola media - 36.054-55 Spogliatoi - Δ9proge	Esterno Esterno VC P1 etto = 25,0 °C Verso di dispersione	NE NW	1,20 1,15 e [%]	2,89 4,42 Anetta [m ²]	1,400 1,400 1,400 1,400 U o ψ [W/(m ² K)] o [W/(mK)]	4,05 6,19 Hix [W/K]	1,00 1,00	121,43 177,98 405,67 ΦT [W]
ED1-2_170x85 ED1-2_170x260 TOTALE A. Scuola media - 29-32. 044-28-32-33 W A. Scuola media - 36.054-55 Spogliatoi - Δ9proge Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 36.054-55 Spogliatoi	Esterno Esterno VC P1 etto = 25,0 °C Verso di dispersione Esterno	NE NW Or [-] N	1,20 1,15 e [%]	2,89 4,42 Anetta [m ²] 117,00	1,400 1,400 1,400 1,400 U o ψ [W/(m ² K)] o [W/(mK)]	4,05 6,19 Hix [W/K]	1,00 1,00	121,43 177,98 405,67 ΦT [W]
ED1-2_170x85 ED1-2_170x260 TOTALE A. Scuola media - 29-32. 044-28-32-33 W A. Scuola media - 36.054-55 Spogliatoi - Δ9proge Elemento disperdente Inveruno_CV05b	Esterno Esterno VC P1 etto = 25,0 °C Verso di dispersione Esterno	NE NW Or [-] N	1,20 1,15 e [%]	2,89 4,42 Anetta [m ²] 117,00	1,400 1,400 1,400 1,400 U o ψ [W/(m ² K)] o [W/(mK)]	4,05 6,19 Hix [W/K]	1,00 1,00	121,43 177,98 405,67 ΦT [W]
ED1-2_170x85 ED1-2_170x260 TOTALE A. Scuola media - 29-32. 044-28-32-33 W A. Scuola media - 36.054-55 Spogliatoi - Δ9proge Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 36.054-55 Spogliatoi A. Scuola media - 37.059-60-61-62-74 Spogliatoi	Esterno Esterno VC P1 Petto = 25,0 °C Verso di dispersione Esterno piccoli + PS - Δ9pro	NE NW Or [-] N	e [%] 1,20 25,0 °C	2,89 4,42 Anetta [m²] 117,00	1,400 1,400 1,400 1,400 U o ψ [W/(m²K)] o [W/(mK)]	4,05 6,19 Hix [W/K] 24,45	1,00 1,00 btrx [-] 1,00	121,43 177,98 405,67 ΦT [W] 733,72
ED1-2_170x85 ED1-2_170x260 TOTALE A. Scuola media - 29-32. 044-28-32-33 W A. Scuola media - 36.054-55 Spogliatoi - Δ9proge Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 36.054-55 Spogliatoi	Esterno Esterno VC P1 etto = 25,0 °C Verso di dispersione Esterno	NE NW Or [-] N	1,20 1,15 e [%]	2,89 4,42 Anetta [m ²] 117,00	1,400 1,400 1,400 1,400 U ο ψ [W/(m²K)] ο [W/(mK)] 0,209	4,05 6,19 Hix [W/K]	1,00 1,00	121,43 177,98 405,67 ΦT [W]
ED1-2_170x85 ED1-2_170x260 TOTALE A. Scuola media - 29-32. 044-28-32-33 W A. Scuola media - 36.054-55 Spogliatoi - Δ9proge Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 36.054-55 Spogliatoi A. Scuola media - 37.059-60-61-62-74 Spogliatoi	Esterno Esterno VC P1 Petto = 25,0 °C Verso di dispersione Esterno piccoli + PS - Δ9pro	NE NW Or [-] N	e [%] 1,20 25,0 °C	2,89 4,42 Anetta [m²] 117,00	1,400 1,400 1,400 1,400 U o ψ [W/(m²K)] 0,209	4,05 6,19 Hix [W/K] 24,45	1,00 1,00 btrx [-] 1,00	121,43 177,98 405,67 ΦT [W] 733,72
ED1-2_170x85 ED1-2_170x260 TOTALE A. Scuola media - 29-32. 044-28-32-33 W A. Scuola media - 36.054-55 Spogliatoi - Δ9proge Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 36.054-55 Spogliatoi A. Scuola media - 37.059-60-61-62-74 Spogliatoi Elemento disperdente	Esterno Esterno VC P1 Verso di dispersione Esterno Verso di dispersione Verso di dispersione	NE NW Or [-] N getto =	e [%] 1,20 25,0 °C	2,89 4,42 Anetta [m²] 117,00 Anetta [m²]	1,400 1,400 1,400 1,400 U ο ψ [W/(m²K)] ο [W/(mK)] 0,209	Hix [W/K] 24,45	1,00 1,00 1,00 btrx [-] 1,00	121,43 177,98 405,67 ΦT [W] 733,72 ΦT [W]
ED1-2_170x85 ED1-2_170x260 TOTALE A. Scuola media - 29-32. 044-28-32-33 W A. Scuola media - 36.054-55 Spogliatoi - Δ9proge Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 36.054-55 Spogliatoi A. Scuola media - 37.059-60-61-62-74 Spogliatoi Elemento disperdente Inveruno_CV05b	Esterno Esterno VC P1 Ptto = 25,0 °C Verso di dispersione Esterno Verso di dispersione Esterno Esterno Verso di dispersione Esterno	NE NW Or [-] N getto =	e [%] 1,20 25,0 °C	2,89 4,42 Anetta [m²] 117,00	1,400 1,400 1,400 1,400 U o ψ [W/(m²K)] 0,209	Hix [W/K] 24,45	1,00 1,00 btrx [-] 1,00	121,43 177,98 405,67 ΦT [W] 733,72 ΦT
ED1-2_170x85 ED1-2_170x260 TOTALE A. Scuola media - 29-32. 044-28-32-33 W A. Scuola media - 36.054-55 Spogliatoi - Δ9proge Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 36.054-55 Spogliatoi A. Scuola media - 37.059-60-61-62-74 Spogliatoi Elemento disperdente	Esterno Esterno VC P1 Ptto = 25,0 °C Verso di dispersione Esterno Verso di dispersione Esterno Esterno Verso di dispersione Esterno	NE NW Or [-] N getto =	e [%] 1,20 25,0 °C	2,89 4,42 Anetta [m²] 117,00 Anetta [m²]	1,400 1,400 1,400 1,400 U ο ψ [W/(m²K)] ο [W/(mK)] 0,209	Hix [W/K] 24,45	1,00 1,00 1,00 btrx [-] 1,00	121,43 177,98 405,67 ΦT [W] 733,72 ΦT [W]
ED1-2_170x85 ED1-2_170x260 TOTALE A. Scuola media - 29-32. 044-28-32-33 W A. Scuola media - 36.054-55 Spogliatoi - Δ9proge Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 36.054-55 Spogliatoi A. Scuola media - 37.059-60-61-62-74 Spogliatoi Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 37.059-60-61-62-74 Spogliatoi	Esterno Esterno VC P1 Ptto = 25,0 °C Verso di dispersione Esterno Verso di dispersione Esterno Esterno Verso di dispersione Esterno Verso di dispersione Esterno	NE NW Or [-] N getto =	e [%] 1,20 25,0 °C	2,89 4,42 Anetta [m²] 117,00 Anetta [m²]	1,400 1,400 1,400 1,400 U ο ψ [W/(m²K)] ο [W/(mK)] 0,209	Hix [W/K] 24,45	1,00 1,00 1,00 btrx [-] 1,00	121,43 177,98 405,67 ΦT [W] 733,72 733,72 ΦT [W] 223,06
ED1-2_170x85 ED1-2_170x260 TOTALE A. Scuola media - 29-32. 044-28-32-33 W A. Scuola media - 36.054-55 Spogliatoi - Δ9proge Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 36.054-55 Spogliatoi A. Scuola media - 37.059-60-61-62-74 Spogliatoi Elemento disperdente Inveruno_CV05b	Esterno Esterno VC P1 Ptto = 25,0 °C Verso di dispersione Esterno Verso di dispersione Esterno Esterno Verso di dispersione Esterno Verso di dispersione Esterno	NE NW Or [-] N getto =	e [%] 1,20 25,0 °C	2,89 4,42 Anetta [m²] 117,00 Anetta [m²]	1,400 1,400 1,400 1,400 U ο ψ [W/(m²K)] ο [W/(mK)] 0,209	Hix [W/K] 24,45	1,00 1,00 1,00 btrx [-] 1,00	121,43 177,98 405,67 ΦT [W] 733,72 733,72 ΦT [W] 223,06
ED1-2_170x85 ED1-2_170x260 TOTALE A. Scuola media - 29-32. 044-28-32-33 W A. Scuola media - 36.054-55 Spogliatoi - Δ9proge Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 36.054-55 Spogliatoi A. Scuola media - 37.059-60-61-62-74 Spogliatoi Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 37.059-60-61-62-74 Spogliatoi	Esterno Esterno VC P1 Ptto = 25,0 °C Verso di dispersione Esterno Verso di dispersione Esterno Esterno Verso di dispersione Esterno Verso di dispersione Esterno	NE NW Or [-] N getto =	e [%] 1,20 25,0 °C	2,89 4,42 Anetta [m²] 117,00 Anetta [m²]	1,400 1,400 1,400 1,400 U ο ψ [W/(m²K)] ο [W/(mK)] 0,209	Hix [W/K] 24,45	1,00 1,00 1,00 btrx [-] 1,00	121,43 177,98 405,67 ΦT [W] 733,72 733,72 ΦT [W] 223,06
ED1-2_170x85 ED1-2_170x260 TOTALE A. Scuola media - 29-32. 044-28-32-33 W A. Scuola media - 36.054-55 Spogliatoi - Δ9proge Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 36.054-55 Spogliatoi A. Scuola media - 37.059-60-61-62-74 Spogliatoi Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 37.059-60-61-62-74 Spogliatoi A. Scuola media - 37.059-60-61-62-74 Spogliatoi	Esterno Esterno VC P1 Verso di dispersione Esterno Verso di dispersione Esterno Verso di dispersione Esterno Quantification piccoli + PS getto = 25,0 °C	NE NW Or [-] N getto =	e [%] 1,20 25,0 °C e [%] 1,20	2,89 4,42 Anetta [m²] 117,00 Anetta [m²] 35,57	1,400 1,400 1,400 1,400 1,400 U o \psi [W/(m²K)] 0,209 U o \psi [W/(m²K)] 0,209	Hix [W/K] 24,45 Hix [W/K] 7,43	1,00 1,00 btrx [-] 1,00 btrx [-] 1,00	121,43 177,98 405,67 ΦT [W] 733,72 733,72 ΦT [W] 223,06
ED1-2_170x85 ED1-2_170x260 TOTALE A. Scuola media - 29-32. 044-28-32-33 W A. Scuola media - 36.054-55 Spogliatoi - Δ9proge Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 36.054-55 Spogliatoi A. Scuola media - 37.059-60-61-62-74 Spogliatoi Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 37.059-60-61-62-74 Spogliatoi	Esterno Esterno VC P1 Ptto = 25,0 °C Verso di dispersione Esterno Verso di dispersione Esterno Verso di dispersione Esterno Verso di dispersione Esterno Ogliatoi piccoli + PS getto = 25,0 °C Verso di	NE NW Or [-] N Getto =	e [%] 1,20 25,0 °C e [%] 1,20 e [%]	2,89 4,42 Anetta [m²] 117,00 Anetta [m²] 35,57	1,400 1,400 1,400 1,400 1,400 U ο ψ [W/(m²K)] 0,209 U ο ψ [W/(m²K)] 0,209	Hix [W/K] 24,45	btrx [-] 1,00 btrx [-] 1,00 btrx	121,43 177,98 405,67 ΦT [W] 733,72 ΦT [W] 223,06 223,06
ED1-2_170x85 ED1-2_170x260 TOTALE A. Scuola media - 29-32. 044-28-32-33 W A. Scuola media - 36.054-55 Spogliatoi - Δ9proge Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 36.054-55 Spogliatoi A. Scuola media - 37.059-60-61-62-74 Spogliatoi Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 37.059-60-61-62-74 Spogliatoi A. Scuola media - 37.059-60-61-62-74 Spogliatoi	Esterno Esterno VC P1 Verso di dispersione Esterno Verso di dispersione Esterno Verso di dispersione Esterno Quantification piccoli + PS getto = 25,0 °C	NE NW Or [-] N getto =	e [%] 1,20 25,0 °C e [%] 1,20	2,89 4,42 Anetta [m²] 117,00 Anetta [m²] 35,57	1,400 1,400 1,400 1,400 U o \psi [W/(m^2K)] o [W/(m/S)] O,209 U o \psi [W/(m/S)] o [W/(m/S)] o [W/(m/S)] O,209	Hix [W/K] 24,45 Hix [W/K] 7,43	1,00 1,00 btrx [-] 1,00 btrx [-] 1,00	121,43 177,98 405,67 ΦT [W] 733,72 733,72 ΦT [W] 223,06
ED1-2_170x85 ED1-2_170x260 TOTALE A. Scuola media - 29-32. 044-28-32-33 W A. Scuola media - 36.054-55 Spogliatoi - Δ9proge Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 36.054-55 Spogliatoi A. Scuola media - 37.059-60-61-62-74 Spogliatoi Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 37.059-60-61-62-74 Spogliatoi A. Scuola media - 37.059-60-61-62-74 Spogliatoi	Esterno Esterno VC P1 Ptto = 25,0 °C Verso di dispersione Esterno Verso di dispersione Esterno Verso di dispersione Esterno Verso di dispersione Esterno Ogliatoi piccoli + PS getto = 25,0 °C Verso di	NE NW Or [-] N Getto =	e [%] 1,20 25,0 °C e [%] 1,20 e [%]	2,89 4,42 Anetta [m²] 117,00 Anetta [m²] 35,57	1,400 1,400 1,400 1,400 1,400 U ο ψ [W/(m²K)] 0,209 U ο ψ [W/(m²K)] 0,209	Hix [W/K] 24,45	btrx [-] 1,00 btrx [-] 1,00 btrx	121,43 177,98 405,67 ΦT [W] 733,72 733,72 ΦT [W] 223,06 223,06
ED1-2_170x85 ED1-2_170x260 TOTALE A. Scuola media - 29-32. 044-28-32-33 W A. Scuola media - 36.054-55 Spogliatoi - Δ9proge Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 36.054-55 Spogliatoi A. Scuola media - 37.059-60-61-62-74 Spogliatoi Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 37.059-60-61-62-74 Spogliatoi Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 37.059-60-61-62-74 Spogliatoi Elemento disperdente Inveruno_CV05a	Esterno Esterno VC P1 Verso di dispersione Esterno	NE NW NW NW NW NW NW NW	e [%] 1,20 25,0 °C e [%] 1,20 e [%]	2,89 4,42 Anetta [m²] 117,00 Anetta [m²] 35,57 Anetta [m²]	1,400 1,400 1,400 1,400 U o ψ [W/(m²K)] o [W/(mK)] o [W/(m²K)] o [W/(mK)] o [W/(mK)] o [W/(mK)]	Hix [W/K] 24,45 Hix [W/K] 7,43	1,00	121,43 177,98 405,67 ΦT [W] 733,72 ΦT [W] 223,06 223,06 ΦT [W] 254,51
ED1-2_170x85 ED1-2_170x260 TOTALE A. Scuola media - 29-32. 044-28-32-33 W A. Scuola media - 36.054-55 Spogliatoi - Δ9proge Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 36.054-55 Spogliatoi A. Scuola media - 37.059-60-61-62-74 Spogliatoi Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 37.059-60-61-62-74 Spogliatoi Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 37.059-60-61-62-74 Spogliatoi Elemento disperdente	Esterno Esterno VC P1 Verso di dispersione Esterno	NE NW NW NW NW NW NW NW	e [%] 1,20 25,0 °C e [%] 1,20 e [%]	2,89 4,42 Anetta [m²] 117,00 Anetta [m²] 35,57 Anetta [m²]	1,400 1,400 1,400 1,400 U o ψ [W/(m²K)] o [W/(mK)] o [W/(m²K)] o [W/(mK)] o [W/(mK)] o [W/(mK)]	Hix [W/K] 24,45 Hix [W/K] 7,43	1,00	121,43 177,98 405,67 ΦT [W] 733,72 733,72 ΦT [W] 223,06 223,06 ΦT [W] 254,51
ED1-2_170x85 ED1-2_170x260 TOTALE A. Scuola media - 29-32. 044-28-32-33 W A. Scuola media - 36.054-55 Spogliatoi - Δ9proge Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 36.054-55 Spogliatoi A. Scuola media - 37.059-60-61-62-74 Spogliatoi Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 37.059-60-61-62-74 Spogliatoi Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 37.059-60-61-62-74 Spogliatoi Elemento disperdente	Esterno Esterno VC P1 Verso di dispersione Esterno Verso di dispersione Esterno Verso di dispersione Esterno Verso di dispersione Esterno Ogliatoi piccoli + PS Qetto = 25,0 °C Verso di dispersione Esterno Esterno	NE NW NW NW NW NW NW NW	e [%] 1,20 25,0 °C e [%] 1,20 e [%]	2,89 4,42 Anetta [m²] 117,00 Anetta [m²] 35,57 Anetta [m²]	1,400 1,400 1,400 1,400 U o ψ [W/(m²K)] o [W/(mK)] o [W/(m²K)] o [W/(mK)] o [W/(mK)] o [W/(mK)]	Hix [W/K] 24,45 Hix [W/K] 7,43	1,00	121,43 177,98 405,67 ΦT [W] 733,72 733,72 ΦT [W] 223,06 223,06 ΦT [W] 254,51
ED1-2_170x85 ED1-2_170x260 TOTALE A. Scuola media - 29-32. 044-28-32-33 W A. Scuola media - 36.054-55 Spogliatoi - Δ9proge Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 36.054-55 Spogliatoi A. Scuola media - 37.059-60-61-62-74 Spogliatoi Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 37.059-60-61-62-74 Spogliatoi Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 37.059-60-61-62-74 Spogliatoi Elemento disperdente	Esterno Esterno VC P1 Verso di dispersione Esterno Verso di dispersione Esterno Verso di dispersione Esterno Verso di dispersione Esterno Ogliatoi piccoli + PS Qetto = 25,0 °C Verso di dispersione Esterno Esterno	NE NW NW NW NW NW NW NW	e [%] 1,20 25,0 °C e [%] 1,20 e [%]	2,89 4,42 Anetta [m²] 117,00 Anetta [m²] 35,57 Anetta [m²]	1,400 1,400 1,400 1,400 U o ψ [W/(m²K)] o [W/(mK)] o [W/(m²K)] o [W/(mK)] o [W/(mK)] o [W/(mK)]	Hix [W/K] 24,45 Hix [W/K] 7,43	1,00	ΦT [W] 223,06 ΦT [W] 254,51
ED1-2_170x85 ED1-2_170x260 TOTALE A. Scuola media - 29-32. 044-28-32-33 W A. Scuola media - 36.054-55 Spogliatoi - Δ9proge Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 36.054-55 Spogliatoi A. Scuola media - 37.059-60-61-62-74 Spogliatoi Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 37.059-60-61-62-74 Spogliatoi Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 37.059-60-61-62-74 Spogliatoi Elemento disperdente	Esterno Esterno VC P1 Verso di dispersione Esterno Verso di dispersione Esterno Verso di dispersione Esterno Verso di dispersione Esterno Ogliatoi piccoli + PS Qetto = 25,0 °C Verso di dispersione Esterno Esterno	NE NW NW NW NW NW NW NW	e [%] 1,20 25,0 °C e [%] 1,20 e [%]	2,89 4,42 Anetta [m²] 117,00 Anetta [m²] 35,57 Anetta [m²]	1,400 1,400 1,400 1,400 U o ψ [W/(m²K)] o [W/(mK)] o [W/(m²K)] o [W/(mK)] o [W/(mK)] o [W/(mK)]	Hix [W/K] 24,45 Hix [W/K] 7,43	1,00	121,43 177,98 405,67 ΦT [W] 733,72 733,72 ΦT [W] 223,06 223,06 ΦT [W] 254,51
ED1-2_170x85 ED1-2_170x260 TOTALE A. Scuola media - 29-32. 044-28-32-33 W A. Scuola media - 36.054-55 Spogliatoi - Δ9proge Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 36.054-55 Spogliatoi A. Scuola media - 37.059-60-61-62-74 Spogliatoi Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 37.059-60-61-62-74 Spogliatoi Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 37.059-60-61-62-74 Spogliatoi Elemento disperdente	Esterno Esterno VC P1 Verso di dispersione Esterno Verso di dispersione Esterno Verso di dispersione Esterno Verso di dispersione Esterno Ogliatoi piccoli + PS Qetto = 25,0 °C Verso di dispersione Esterno Esterno	NE NW NW NW NW NW NW NW	e [%] 1,20 25,0 °C e [%] 1,20 e [%]	2,89 4,42 Anetta [m²] 117,00 Anetta [m²] 35,57 Anetta [m²]	1,400 1,400 1,400 1,400 U o \psi [W/(m^2K)] o [W/(m^2K)] o,209 U o \psi [W/(m^2K)] o [W/(mK)] o,209	Hix [W/K] 24,45 Hix [W/K] 7,43	1,00	121,43 177,98 405,67 ΦT [W] 733,72 733,72 ΦT [W] 223,06 223,06 ΦT [W] 254,51
ED1-2_170x85 ED1-2_170x260 TOTALE A. Scuola media - 29-32. 044-28-32-33 W A. Scuola media - 36.054-55 Spogliatoi - Δ9proge Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 36.054-55 Spogliatoi A. Scuola media - 37.059-60-61-62-74 Spogliatoi Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 37.059-60-61-62-74 Spogliatoi A. Scuola media - 38.056 Connettivo PSI - Δ9progente Elemento disperdente Inveruno_CV05a TOTALE A. Scuola media - 38.056 Connettivo PSI A. Scuola media - 39.063-75 Deposito 2 - Δ9progente	Esterno Esterno VC P1 Verso di dispersione Esterno Verso di Verso di Verso di	NE NW Or [-] N getto = Or [-] N Or [-] Or [-] Or	e [%] 1,20 25,0 °C e [%] 1,20 e [%] 1,20 e [%]	2,89 4,42 Anetta [m²] 117,00 Anetta [m²] 35,57 Anetta [m²] 40,50	U o ψ [W/(m²K)] o [W/(mK)] o [W/(mK)] o [W/(mK)] o [W/(mK)] o [W/(mK)]	Hix [W/K] 24,45 Hix [W/K] 7,43 Hix [W/K] 8,48	1,00	121,43 177,98 405,67 ΦT [W] 733,72 733,72 ΦT [W] 223,06 223,06 ΦT [W] 254,51 254,51
ED1-2_170x85 ED1-2_170x260 TOTALE A. Scuola media - 29-32. 044-28-32-33 W A. Scuola media - 36.054-55 Spogliatoi - Δ9proge Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 36.054-55 Spogliatoi A. Scuola media - 37.059-60-61-62-74 Spogliatoi Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 37.059-60-61-62-74 Spogliatoi A. Scuola media - 38.056 Connettivo PSI - Δ9progente Elemento disperdente Inveruno_CV05a TOTALE A. Scuola media - 38.056 Connettivo PSI A. Scuola media - 39.063-75 Deposito 2 - Δ9progente	Esterno Esterno VC P1 Verso di dispersione Esterno Verso di dispersione Esterno Verso di dispersione Esterno Verso di dispersione Esterno Ogliatoi piccoli + PS Qetto = 25,0 °C Verso di dispersione Esterno Letto = 25,0 °C	NE NW Or [-] N getto = Or [-] N N	e [%] 1,20 25,0 °C e [%] 1,20 e [%] 1,20	2,89 4,42 Anetta [m²] 117,00 Anetta [m²] 35,57 Anetta [m²] 40,50	U o ψ [W/(m²K)] o [W/(mK)] o [W/(mK)] o [W/(mK)] o [W/(mK)] o [W/(mK)] o [W/(mK)]	Hix [W/K] 24,45 Hix [W/K] 7,43	btrx [-] 1,00 btrx [-] 1,00 btrx [-] 1,00	121,43 177,98 405,67 ΦT [W] 733,72 733,72 ΦT [W] 223,06 223,06 ΦT [W] 254,51
ED1-2_170x85 ED1-2_170x260 TOTALE A. Scuola media - 29-32. 044-28-32-33 W A. Scuola media - 36.054-55 Spogliatoi - Δ9proge Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 36.054-55 Spogliatoi A. Scuola media - 37.059-60-61-62-74 Spogliatoi Elemento disperdente Inveruno_CV05b TOTALE A. Scuola media - 37.059-60-61-62-74 Spogliatoi Elemento disperdente Inveruno_CV05b A. Scuola media - 38.056 Connettivo PSI - Δ9progenta -	Esterno Esterno VC P1 Verso di dispersione Esterno Verso di Verso di Verso di	NE NW Or [-] N getto = Or [-] N Or [-] Or [-] Or	e [%] 1,20 25,0 °C e [%] 1,20 e [%] 1,20 e [%]	2,89 4,42 Anetta [m²] 117,00 Anetta [m²] 35,57 Anetta [m²] 40,50	U ο ψ [W/(m²K)] ο [W/(mK)] ο [W/(mK)] ο [W/(mK)] ο [W/(mK)] ο [W/(mK)] ο [W/(mK)]	Hix [W/K] 24,45 Hix [W/K] 7,43 Hix [W/K] 8,48	1,00	121,43 177,98 405,67 ΦT [W] 733,72 733,72 ΦT [W] 223,06 223,06 ΦT [W] 254,51

542,20

A. Scuola media - 41.057 Deposito 1 - Δ9progetto = 25,0 °C

Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	ΦТ
	dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W]
Inveruno_CV06 NR	Centrale termica scuola media	Z	1,00	57,04	2,047	116,75	0,00	0,00

TOTALE A. Scuola media - 41.057 Deposito 1

0,00

A. Scuola media - 40.072 Scala - Δ9progetto = 25,0 °C

Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	ΦТ
	dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W]
ED1-2_170x260	Esterno	SE	1,10	13,26	1,400	18,56	1,00	510,74
Inveruno_CV05a	Esterno	N	1,20	16,35	0,209	3,42	1,00	102,75

TOTALE A. Scuola media - 40.072 Scala

613,49

Refettorio - 1. 001. Refettorio - Δ9progetto = 25,0 °C

Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	ΦТ
	dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W]
ED1-2_170x260	Esterno	NE	1,20	8,84	1,400	12,38	1,00	371,45
ED1-2_170x260	Esterno	SW	1,05	8,84	1,400	12,38	1,00	325,02
ED1-2_PT_170x150	Esterno	SE	1,10	2,55	1,400	3,57	1,00	98,22
ED1-2_PT_170x260_con tenda	Esterno	NE	1,20	13,26	1,400	18,56	1,00	557,17
ED1-2_PT_170x260_con tenda	Esterno	NW	1,15	22,10	1,400	30,94	1,00	889,92
ED1-2_PT_170x260_con tenda	Esterno	SE	1,10	22,10	1,400	30,94	1,00	851,23

TOTALE Refettorio - 1. 001. Refettorio

3.093,01

Palestra - 21.028. Palestra - Δ9progetto = 25,0 °C

Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	ΦТ
	dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W]
ED1-2_170x260	Esterno	SE	1,10	57,46	1,400	80,44	1,00	2.213,20
ED1_PT_170x245	Esterno	NE	1,20	2,76	1,400	3,86	1,00	115,97
ED1-2_170x260	Esterno	NW	1,15	57,46	1,400	80,44	1,00	2.313,80
ED1_P-1_120x210	Esterno	N	1,20	4,50	1,400	6,30	1,00	189,08
ED1_P-1_150x150	Esterno	N	1,20	27,00	1,400	37,80	1,00	1.134,51

TOTALE Palestra - 21.028. Palestra

5.966,58

Or Orientamento cardinale dell'elemento

e Coefficiente di maggiorazione della dispersione in funzione dell'orientamento [%]

An o I Area strutture al netto degli elementi in detrazione $[m^2]$ o lunghezza per i ponti termici [m] U o ψ Trasmittanza per le strutture $[W/(m^2K)]$ o trasmittanza lineica per i ponti termici [W/(mK)]

Hix Coefficiente di scambio termico della struttura verso l'ambiente x [W/K]
btr,x Fattore di riduzione equivalente dello scambio termico verso l'ambiente x [-]

H Coefficiente di scambio termico per trasmissione

Φ Potenza termica dispersa per trasmissione in condizioni di progetto [W]

DISPERSIONI PER VENTILAZIONE

Scuola Inveruno

Volume netto totale dell'edificio Vn: 16.633,2 m³

Descrizione dell'ambiente	Ricambio d'aria effettivo	dall'impianto di ventilazione attraverso apparecchi di		Rendimento termico degli apparecchi di recupero del calore
		m ³ /h	m ³ /h	%
-				

Zona: A. Scuola media

Locale	Vn	V'i	HV	Δθρ	ФV
		[m ³ /h]	[W/K]	[°C]	[W]
10.027 Atrio	239,0	119,5	40,6	25,0	1.016,2
15.020-22. Aule sinistra PT	456,0	228,0	77,5	25,0	1.938,9
11.12.006-7-12 Wc + rispostiglio	67,6	33,8	11,5	25,0	287,4
16-18. 019-25 Laboratori	474,2	237,1	80,6	25,0	2.016,3
8-9.005-8-9-10-11 Uffici	297,9	148,9	50,6	25,0	1.266,6
5-14.004-16 WC	144,5	72,3	24,6	25,0	614,4
7-13. 070-71 Scale	112,2	56,1	19,1	25,0	477,1
6.018. Connettivo orizzontale	940,6	470,3	159,9	25,0	3.999,3
4. 065 Filtro fumo	44,5	22,3	7,6	25,0	189,2
28.043 Connettivo orizzont P1	866,5	433,3	147,3	25,0	3.684,3
25-26.035-36-37-40-41-42. Aule P1	912,1	456,0	155,1	25,0	3.878,2
24-27.039-38. Laboratori P1	474,0	237,0	80,6	25,0	2.015,4
31.030-31-47 Uffici + laboratorio P1	651,6	325,8	110,8	25,0	2.770,5
29-32. 044-28-32-33 WC P1	195,7	97,8	33,3	25,0	832,1
2. 002 Zona servizio + dispensa	189,7	94,8	32,2	25,0	806,6
22.029-72 Atrio palestra + scale	374,5	187,3	63,7	25,0	1.592,3
33.046-73 WC Palestra	38,9	19,5	6,6	25,0	165,4
35.073. Scala palestra	150,1	75,1	25,5	25,0	638,2
19.064 Filtro fumo palestra	64,9	32,5	11,0	25,0	275,9
34.045. Sala coppe Palestra	232,2	116,1	39,5	25,0	987,3
3. 003 Wc mensa	12,7	6,3	2,2	25,0	54,0
17.023-25. Aule destra PT	456,0	228,0	77,5	25,0	1.938,9
20.014 Ascensore + cavedi	96,7	48,3	16,4	25,0	411,2
23.053-52 Ascensori	22,9	11,4	3,9	25,0	97,4
30. 070-71 Scale P1	92,9	46,5	15,8	25,0	395,0
36.054-55 Spogliatoi	428,3	214,1	72,8	25,0	1.821,1
37.059-60-61-62-74 Spogliatoi piccoli + PS	379,0	189,5	64,4	25,0	1.611,5
38.056 Connettivo PSI	372,4	186,2	63,3	25,0	1.583,4
39.063-75 Deposito 2	227,3	113,7	38,6	25,0	966,5
41.057 Deposito 1	615,8	307,9	104,7	25,0	2.618,3
40.072 Scala	69,2	34,6	11,8	25,0	294,2

Zona: Refettorio

Locale	Vn	V'i	HV	Δθр	ФΛ
		[m ³ /h]	[W/K]	[°C]	[W]
1. 001. Refettorio	496,6	248,3	84,4	25,0	2.111,5

Zona: Palestra

Locale	Vn	V'i	HV	$\Delta \vartheta$ p	ФV
		[m ³ /h]	[W/K]	[°C]	[W]
21.028. Palestra	6.436,7	3.218,4	1.094,2	25,0	27.368,3

Totale Scuola Inveruno	8.316,6	2.827,6	-	70.722,9	ĺ
------------------------	---------	---------	---	----------	---

VnVolume netto del singolo localeHVCoefficiente globale di scambio termico per ventilazioneV'iPortata d'aria effettiva di ventilazione per singolo localeΦVPotenza termica dispersa per ventilazione in condizioni diΔ9pSalto termico di progetto verso l'esternoprogetto

POTENZA TERMICA DI RIPRESA

Scuola Inveruno

Zona: A. Scuola media - fRH = 18,0 W/m2

Locale	Su	ΦRH
	[m ²]	[W]
10.027 Atrio	88,5	1.593,2
15.020-22. Aule sinistra PT	152,0	2.736,2
11.12.006-7-12 Wc + rispostiglio	28,2	506,7
16-18. 019-25 Laboratori	158,1	2.845,1
8-9.005-8-9-10-11 Uffici	99,3	1.787,4
5-14.004-16 WC	57,8	1.040,4
7-13. 070-71 Scale	33,2	597,6
6.018. Connettivo orizzontale	348,4	6.270,5
4. 065 Filtro fumo	16,5	296,8
28.043 Connettivo orizzont P1	320,9	5.776,7
25-26.035-36-37-40-41-42. Aule P1	304,0	5.472,4
24-27.039-38. Laboratori P1	158,0	2.844,0
31.030-31-47 Uffici + laboratorio P1	217,2	3.909,6
29-32. 044-28-32-33 WC P1	78,3	1.409,4
2. 002 Zona servizio + dispensa	63,2	1.138,0
22.029-72 Atrio palestra + scale	102,0	1.836,7
33.046-73 WC Palestra	16,2	292,0
35.073. Scala palestra	16,0	288,0
19.064 Filtro fumo palestra	24,0	432,7
34.045. Sala coppe Palestra	77,4	1.393,2
3. 003 Wc mensa	4,7	85,0
17.023-25. Aule destra PT	152,0	2.736,2
20.014 Ascensore + cavedi	12,4	223,2
23.053-52 Ascensori	2,4	43,9
30. 070-71 Scale P1	27,5	495,0
36.054-55 Spogliatoi	171,3	3.083,9
37.059-60-61-62-74 Spogliatoi piccoli + PS	145,8	2.623,7
38.056 Connettivo PSI	155,2	2.792,7
39.063-75 Deposito 2	56,4	1.015,0
41.057 Deposito 1	152,8	2.750,4
40.072 Scala	17,3	311,4

Zona: Refettorio - fRH = 18,0 W/m2

Locale	Su	ΦRH
	[m ²]	[W]
1. 001. Refettorio	165,5	2.979,4

Zona: Palestra - fRH = 18,0 W/m2

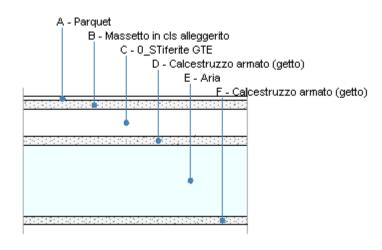
Locale	Su	ΦRH
	[m ²]	[W]
21.028. Palestra	894,0	16.091,8

Totale Scuola Inveruno	4.316.6	77,698,1

fRH Fattore di ripresa

Su Superficie utile netta del locale ΦRH Potenza termica di ripresa

DISPERSIONI DI PROGETTO E CARICO TERMICO TOTALE


Scuola Inveruno

Zona riscaldata	ΦΤ	ФУ	Фкн	ΦHL
	[W]	[W]	[W]	[W]
A. Scuola media	39.082,84	41.243,10	58.626,90	138.952,84
Refettorio	3.093,01	2.111,50	2.979,36	8.183,87
Palestra	5.966,58	27.368,27	16.091,82	49.426,67

Totale Scuola Inveruno 48.142,43 70.722,87 77.698,08 196.563,38

Φτ Potenza termica dispersa per trasmissione in condizioni di progetto
 Φν Potenza termica dispersa per ventilazione in condizioni di progetto
 ΦRH Potenza termica di ripresa

ΦRH Potenza termica di ripresaΦHL Carico termico totale

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: Inveruno_CO01

Note:

Tipologia:	<u>Pavimento</u>	Disposizione:	<u>Orizzontale</u>
Verso:	<u>Terreno</u>	Spessore:	<u>722,0</u> mm
Trasmittanza U:	0,043 W/(m ² K)	Resistenza R:	23,259 (m ² K)/W
Massa superf.:	337 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità term. C	Fattore μa	Fattore μu
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso verticale discendente)	-	-	0,170	-		-	-
_ A	Parquet	22,0	0,150	0,147	500	1,60	1,0	0,0
В	Massetto in cls alleggerito	50,0	1,080	0,046	1.600	1,00	3,3	3,3
С	0_STiferite GTE	150,0	0,022	6,818	34	1,40	89.900 ,0	89.900 ,0
D	Calcestruzzo armato (getto)	50,0	1,910	0,026	2.400	1,00	0,0	999.99 9,0
Е	Aria	400,0	0,025	16,026	1	1,01	1,0	1,0
F	Calcestruzzo armato (getto)	50,0	1,910	0,026	2.400	1,00	0,0	999.99 9,0
	TOTALE	722,0		23,259				

Conduttanza unitaria superficiale interna: 5,880 W/(m²K)

Resistenza unitaria superficiale interna: 0,170 (m²K)/W

Conduttanza unitaria superficiale esterna: 0,000 W/(m²K)

Resistenza unitaria superficiale esterna: 0,000 (m²K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	<u>Inveruno</u>	Zona climatica:	<u>E</u>
Trasmittanza della struttura U:	0,043 W/(m ² K)	Trasmittanza limite Ulim:	0,578 W/(m ² K)

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

ESITO VERIFICA DI TRASMITTANZA: -

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	Inveruno	Tipo di calcolo:	Classi di concentrazione
Verso:	Terreno	Coeff. di correzione btr,x:	
Classe di edificio:	Edifici con indice di affollamento non	Volume interno V:	- m ³
Classe di edificio:	noto	volume interno v:	- Mo
Produz. nota di vapore G:	- kg/h		

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	-	11,2	100,0	0,5
febbraio	20,0	-	11,2	100,0	0,5
marzo	20,0	-	11,2	100,0	0,5
aprile	20,0	-	11,2	100,0	0,5
maggio	20,0	-	11,2	100,0	0,5
giugno	20,0	-	11,2	100,0	0,5
luglio	20,0	-	11,2	100,0	0,5
agosto	20,0	-	11,2	100,0	0,5
settembre	20,0	-	11,2	100,0	0,5
ottobre	20,0	-	11,2	100,0	0,5
novembre	20,0	-	11,2	100,0	0,5
dicembre	20,0	-	11,2	100,0	0,5

CONDIZIONE	Temperatura interna θi	Pressione parziale interna pi	Temperatura esterna θe	Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	11,20	1.331,00
ESTIVA	20,00	865,20	11,20	1.331,00

X	La struttura non è soggetta a fenomeni di condensa interstiziale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 584,843 Pa.			
	La struttura è soggetta a fenomeni di condensa.			
	La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).			
X	La struttura non è soggetta a fenomeni di condensa superficiale.			
X La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 584,843 Pa.				

VERIFICA FORMAZIONE MUFFE SUPERFICIALI

CONDIZIONI AL CONTORNO INTERNE ED ESTERNE

Mese	Temperatura esterna Te °C	Pressione esterna Pe Pa	Variazione di pressione ΔP Pa	Pressione interna Pi Pa	Temperatura interna Ti °C	Umidità relativa interna φi %
IVICSC		ı u	ı u	ı u		70
ottobre	11,2	1331,03	411,81	1742,83	20	100
novembre	11,2	1331,03	411,81	1742,83	20	100
dicembre	11,2	1331,03	411,81	1742,83	20	100
gennaio	11,2	1331,03	411,81	1742,83	20	100
febbraio	11,2	1331,03	411,81	1742,83	20	100
marzo	11,2	1331,03	411,81	1742,83	20	100
aprile	11,2	1331,03	411,81	1742,83	20	100

CALCOLO DEL FATTORE DI RISCHIO

La verifica della formazione di muffa è eseguita in maniera conforme a quanto riportato nella norma UNI EN ISO 13788

	Temperatura superficiale critica Tsi-critica	Fattore di rischio ammissibile frsi- amm
Mese	°C	-

ottobre	18,87	0,8715
novembre	18,87	0,8715
dicembre	18,87	0,8715
gennaio	18,87	0,8715
febbraio	18,87	0,8715
marzo	18,87	0,8715
aprile	18,87	0,8715

Riepilogo dei risultati:

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione

Fattore di resistenza superficiale fRsi: 0,8715 (mese di Ottobre)

Fattore di resistenza superficiale ammissibile massimo fRsiAmm: 0,9944

ESITO VERIFICA DI MUFFA: OK

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8
	2.319,7	2.319,7	2.319,7	2.319,7	2.319,7	2.319,7	2.319,7	2.319,7	2.319,7	2.319,7	2.319,7	2.319,7
A-B	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8
	2.317,2	2.317,2	2.317,2	2.317,2	2.317,2	2.317,2	2.317,2	2.317,2	2.317,2	2.317,2	2.317,2	2.317,2
B-C	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0
	1.972,3	1.972,3	1.972,3	1.972,3	1.972,3	1.972,3	1.972,3	1.972,3	1.972,3	1.972,3	1.972,3	1.972,3
C-D	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0
	1.971,1	1.971,1	1.971,1	1.971,1	1.971,1	1.971,1	1.971,1	1.971,1	1.971,1	1.971,1	1.971,1	1.971,1
D-E	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0
	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9
E-Esterno	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0
	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0

TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9
A-B	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9
B-C	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9
C-D	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3
D-E	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3
E-Esterno	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2
E-Esterno	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. E/F												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]												

Verifica di condensa interstiziale:


Quantità massima di vapore accumulato mensilmente Gc: 0,0000 (mese di -) kg/m^2 nell'interfaccia -

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia Gc,max: 0,5000 kg/m²

Quantità di vapore residuo Ma: 0,0000 (mese di -) kg/m² nell'interfaccia -

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA febbiáo mairo ts tá Gennaio Febbraio Marzo арі le тадаја giugna ti ti ti, 2000 Giugno Aprile Maggio settem bie lugia agasto tá tá Ħ Luglio Agosto Settembre dcemble attable navem Die tá Ottobre Novembre Dicembre LEGENDA Temperatura [°C] Pressione del vapore [Pa] Press. di saturazione [Pa]

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: Inveruno_CO03

Note:

Tipologia:	<u>Pavimento</u>	Disposizione:	<u>Orizzontale</u>
Verso:	<u>Terreno</u>	Spessore:	860,0 mm
Trasmittanza U:	0,042 W/(m ² K)	Resistenza R:	23,638 (m ² K)/W
Massa superf.:	479 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore	Conduttività	Resistenza	Densità	Capacità term.	Fattore	Fattore
	Strato	s	λ	R	ρ	С	μа	μи
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso verticale discendente)	-	-	0,170	-	-	-	-
А	Pavimentazione interna-gres	10,0	1,470	0,007	1.700	1,00	0,0	999.99 9,0
В	Massetto in cls alleggerito	70,0	1,080	0,065	1.600	1,00	3,3	3,3
С	0_STiferite GTE	150,0	0,022	6,818	34	1,40	89.900 ,0	89.900 ,0
D	Calcestruzzo strutt. aperta, argilla espansa, esterni, umidità 6%(800 kg/m3)	130,0	0,260	0,500	800	0,88	5,6	3,3
Е	Calcestruzzo armato (getto)	50,0	1,910	0,026	2.400	1,00	0,0	999.99 9,0
F	Aria	400,0	0,025	16,026	1	1,01	1,0	1,0
G	Calcestruzzo armato (getto)	50,0	1,910	0,026	2.400	1,00	0,0	999.99 9,0
	TOTALE	860,0		23,638				

Conduttanza unitaria superficiale interna: 5,880 W/(m²K)

Resistenza unitaria superficiale interna: 0,170 (m²K)/W

Conduttanza unitaria superficiale esterna: 0,000 W/(m²K)

Resistenza unitaria superficiale esterna: 0,000 (m²K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	Inveruno	Zona climatica:	E
Trasmittanza della struttura U:	0,042 W/(m ² K)	Trasmittanza limite Ulim:	0,578 W/(m ² K)

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

ESITO VERIFICA DI TRASMITTANZA: -

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	<u>Inveruno</u>	Tipo di calcolo:	Classi di concentrazione		
Verso:	<u>Terreno</u>	Coeff. di correzione btr,x:			
Classe di adificia	Edifici con indice di affollamento non	Valuma interna V	- m3		
Classe di edificio:	noto	Volume interno V:	- mo		
Produz. nota di vapore G:	- kg/h				

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	-	11,2	100,0	0,5
febbraio	20,0	-	11,2	100,0	0,5
marzo	20,0	-	11,2	100,0	0,5
aprile	20,0	-	11,2	100,0	0,5
maggio	20,0	-	11,2	100,0	0,5
giugno	20,0	-	11,2	100,0	0,5
luglio	20,0	-	11,2	100,0	0,5
agosto	20,0	-	11,2	100,0	0,5
settembre	20,0	-	11,2	100,0	0,5
ottobre	20,0	-	11,2	100,0	0,5
novembre	20,0	-	11,2	100,0	0,5
dicembre	20,0	-	11,2	100,0	0,5

CONDIZIONE	Temperatura interna θi	Temperatura interna θi Pressione parziale interna pi Temper		Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	11,20	1.331,00
ESTIVA	20,00	865,20	11,20	1.331,00

X	La struttura non è soggetta a fenomeni di condensa interstiziale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 584,991 Pa.
	La struttura è soggetta a fenomeni di condensa.
	La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).
X	La struttura non è soggetta a fenomeni di condensa superficiale.
Λ	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 584,991 Pa.

VERIFICA FORMAZIONE MUFFE SUPERFICIALI

CONDIZIONI AL CONTORNO INTERNE ED ESTERNE

Mese	Temperatura esterna Te °C	Pressione esterna Pe Pa	Variazione di pressione ΔP Pa	Pressione interna Pi Pa	Temperatura interna Ti °C	Umidità relativa interna φi %
ottobre	11,2	1331,03	411,81	1742.83	20	100
Ottobre	11,2	1331,03	411,01	1742,03	20	100
novembre	11,2	1331,03	411,81	1742,83	20	100
dicembre	11,2	1331,03	411,81	1742,83	20	100
gennaio	11,2	1331,03	411,81	1742,83	20	100
febbraio	11,2	1331,03	411,81	1742,83	20	100
marzo	11,2	1331,03	411,81	1742,83	20	100
aprile	11,2	1331,03	411,81	1742,83	20	100

CALCOLO DEL FATTORE DI RISCHIO

La verifica della formazione di muffa è eseguita in maniera conforme a quanto riportato nella norma UNI EN ISO 13788

	Temperatura superficiale critica T _S i-critica	Fattore di rischio ammissibile frsi- amm
Mese	°C	-

ottobre	18,87	0,8715
novembre	18,87	0,8715
dicembre	18,87	0,8715
gennaio	18,87	0,8715
febbraio	18,87	0,8715
marzo	18,87	0,8715
aprile	18,87	0,8715

Riepilogo dei risultati:

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione

Fattore di resistenza superficiale fRsi: 0,8715 (mese di Ottobre)

Fattore di resistenza superficiale ammissibile massimo fRsiAmm: 0,9945

ESITO VERIFICA DI MUFFA: OK

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8
	2.327,5	2.327,5	2.327,5	2.327,5	2.327,5	2.327,5	2.327,5	2.327,5	2.327,5	2.327,5	2.327,5	2.327,5
A-B	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8
	2.324,0	2.324,0	2.324,0	2.324,0	2.324,0	2.324,0	2.324,0	2.324,0	2.324,0	2.324,0	2.324,0	2.324,0
B-C	1.331,1	1.331,1	1.331,1	1.331,1	1.331,1	1.331,1	1.331,1	1.331,1	1.331,1	1.331,1	1.331,1	1.331,1
	1.983,4	1.983,4	1.983,4	1.983,4	1.983,4	1.983,4	1.983,4	1.983,4	1.983,4	1.983,4	1.983,4	1.983,4
C-D	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0
	1.960,2	1.960,2	1.960,2	1.960,2	1.960,2	1.960,2	1.960,2	1.960,2	1.960,2	1.960,2	1.960,2	1.960,2
D-E	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0
	1.959,0	1.959,0	1.959,0	1.959,0	1.959,0	1.959,0	1.959,0	1.959,0	1.959,0	1.959,0	1.959,0	1.959,0
E-F	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0
	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9
F-Esterno	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0
	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0

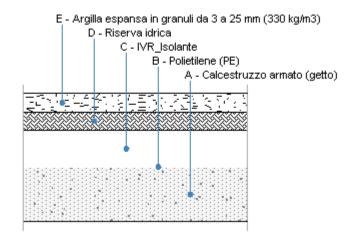
TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9
A-B	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9
B-C	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9
C-D	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4
D-E	17,2	17,2	17,2	17,2	17,2	17,2	17,2	17,2	17,2	17,2	17,2	17,2
E-F	17,2	17,2	17,2	17,2	17,2	17,2	17,2	17,2	17,2	17,2	17,2	17,2
F-Esterno	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2
F-Esterno	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. E/F												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]												

Verifica di condensa interstiziale:


Quantità massima di vapore accumulato mensilmente Gc: 0,0000 (mese di -) kg/m^2 nell'interfaccia -

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia $G_{c,max}$: 0,5000 kg/m 2

Quantità di vapore residuo Ma: 0,0000 (mese di -) kg/m² nell'interfaccia -

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA febbiáo mairo tá tá Gennaio Febbraio Marzo арі le тадаја giugna <u>t</u> ti ti, Aprile Maggio Giugno settem bie lugia agasto tá tá Ħ Luglio Agosto Settembre dcemble attable navem Die tá Dicembre Ottobre Novembre LEGENDA Temperatura [°C] Pressione del vapore [Pa] Press. di saturazione [Pa]

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: Inveruno_COP01a

Note:

Tipologia:	<u>Copertura</u>	Disposizione:	<u>Orizzontale</u>
Verso:	<u>Esterno</u>	Spessore:	<u>701,0</u> mm
Trasmittanza U:	0,108 W/(m ² K)	Resistenza R:	9,224 (m ² K)/W
Massa superf.:	770 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità term.	Fattore μa	Fattore μu
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso verticale ascendente)	-	-	0,100	-	_		-
А	Calcestruzzo armato (getto)	300,0	1,910	0,157	2.400	1,00	0,0	999.99 9,0
В	Polietilene (PE)	1,0	0,350	0,003	950	2,30	54.054 ,1	54.054 ,1
С	IVR_Isolante	200,0	0,028	7,143	35	1,40	56,0	56,0
D	Riserva idrica	100,0	0,128	0,781	90	1,00	1,0	0,0
Е	Argilla espansa in granuli da 3 a 25 mm (330 kg/m3)	100,0	0,100	1,000	330	0,92	3,2	3,2
	Adduttanza esterna (flusso verticale ascendente)	-	-	0,040	-	-	-	-
	TOTALE	701,0		9,224				

Conduttanza unitaria superficiale interna: 10,000 W/(m²K)

Resistenza unitaria superficiale interna: 0,100 (m²K)/W

Conduttanza unitaria superficiale esterna: 25,000 W/(m²K)

Resistenza unitaria superficiale esterna: 0,040 (m²K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	<u>Inveruno</u>	Zona climatica:	<u>E</u>
Trasmittanza della struttura U:	0,108 W/(m ² K)	Trasmittanza limite Ulim:	0,220 W/(m ² K)

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

ESITO VERIFICA DI TRASMITTANZA: -

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	Inveruno	Tipo di calcolo:	Classi di concentrazione
Verso:	<u>Esterno</u>	Coeff. di correzione btr,x:	
Classe di adificia	Edifici con indice di affollamento non	Volume interno V:	- m3
Classe di edificio:	noto	volume interno v.	- IIIo
Produz. nota di vapore G:	- kg/h		

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	-	-0,1	84,9	0,5
febbraio	20,0	-	3,4	74,0	0,5
marzo	20,0	-	7,0	63,4	0,5
aprile	20,0	-	10,3	66,4	0,5
maggio	20,0	-	16,2	72,9	0,5
giugno	20,0	-	20,3	70,5	0,5
luglio	20,0	-	21,0	64,3	0,5
agosto	20,0	-	20,9	66,1	0,5
settembre	20,0	-	17,0	71,8	0,5
ottobre	20,0	-	11,4	90,7	0,5
novembre	20,0	-	5,9	94,7	0,5
dicembre	20,0	-	1,3	85,6	0,5

CONDIZIONE	Temperatura interna θi	Pressione parziale interna pi	Temperatura esterna θe	Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	-0,10	514,20
ESTIVA	20,00	1.615,60	21,00	1.597,60

X	La struttura non è soggetta a fenomeni di condensa interstiziale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 570,635 Pa.
	La struttura è soggetta a fenomeni di condensa.
	La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).
×	La struttura non è soggetta a fenomeni di condensa superficiale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 570,635 Pa.

VERIFICA FORMAZIONE MUFFE SUPERFICIALI

CONDIZIONI AL CONTORNO INTERNE ED ESTERNE

Mese	Temperatura esterna Te °C	Pressione esterna Pe Pa	Variazione di pressione ΔP Pa	Pressione interna Pi Pa	Temperatura interna Ti °C	Umidità relativa interna φi %
ottobre	11,4	1221,38	405,3	1626.68	20	91
novembre	5,9	878,74	600,55	1479,29	20	95
			,	· · ·		
dicembre	1,3	574,43	763,85	1338,28	20	86
gennaio	-0,1	514,17	810	1324,17	20	85
febbraio	3,4	576,19	689,3	1265,49	20	74
marzo	7,0	634,73	561,5	1196,23	20	63
aprile	10,3	831,79	444,35	1276,14	20	66

CALCOLO DEL FATTORE DI RISCHIO

La verifica della formazione di muffa è eseguita in maniera conforme a quanto riportato nella norma UNI EN ISO 13788

	Temperatura superficiale critica Tsi-critica	Fattore di rischio ammissibile frsi- amm
Mese	°C	-

ottobre	17,77	0,7408
novembre	16,27	0,7356
dicembre	14,71	0,7171
gennaio	14,55	0,7287
febbraio	13,85	0,6293
marzo	12,98	0,4602
aprile	13,98	0,3789

Riepilogo dei risultati:

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione

Fattore di resistenza superficiale fRsi: 0,7408 (mese di Ottobre)

Fattore di resistenza superficiale ammissibile massimo fRsiAmm: 0,9859

ESITO VERIFICA DI MUFFA: OK

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.324,2	1.265,5	1.196,2	1.276,1	1.577,5	1.766,8	1.662,1	1.700,1	1.596,5	1.626,7	1.479,3	1.338,3
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.324,2	1.265,5	1.196,2	1.276,1	1.577,5	1.766,8	1.662,1	1.700,1	1.596,5	1.626,7	1.479,3	1.338,3
	2.257,1	2.270,9	2.285,1	2.298,1	2.321,7	2.338,2	2.341,0	2.340,6	2.324,9	2.302,5	2.280,7	2.262,6
A-B	657,5	698,1	734,1	910,4	1.384,1	1.693,2	1.609,0	1.644,1	1.426,5	1.293,1	985,0	709,6
	2.256,3	2.270,1	2.284,5	2.297,7	2.321,5	2.338,2	2.341,0	2.340,6	2.324,8	2.302,1	2.280,1	2.261,8
В-С	519,3	580,6	638,3	834,6	1.344,1	1.678,0	1.598,0	1.632,5	1.391,3	1.224,0	882,6	579,3
	805,4	979,4	1.192,1	1.421,8	1.930,6	2.372,0	2.455,6	2.443,5	2.010,5	1.506,6	1.123,2	871,4
C-D	518,1	579,5	637,5	833,9	1.343,7	1.677,9	1.597,9	1.632,4	1.391,0	1.223,4	881,7	578,1
	713,7	888,5	1.106,7	1.346,7	1.891,5	2.375,7	2.468,4	2.455,0	1.978,6	1.436,3	1.035,5	779,6
D-E	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	609,9	783,1	1.005,2	1.255,7	1.842,6	2.380,5	2.484,9	2.469,8	1.938,2	1.350,6	932,1	674,7
E-Add	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	605,5	779,2	1.001,3	1.252,2	1.840,6	2.380,7	2.485,6	2.470,4	1.936,6	1.347,3	928,2	670,7

TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	19,8	19,8	19,9	19,9	20,0	20,0	20,0	20,0	20,0	19,9	19,8	19,8
A-B	19,4	19,5	19,6	19,7	19,9	20,0	20,0	20,0	19,9	19,8	19,6	19,5
B-C	19,4	19,5	19,6	19,7	19,9	20,0	20,0	20,0	19,9	19,8	19,6	19,5
C-D	3,9	6,7	9,6	12,2	17,0	20,2	20,8	20,7	17,6	13,1	8,7	5,0
D-E	2,2	5,3	8,5	11,4	16,6	20,3	20,9	20,8	17,3	12,4	7,5	3,4
E-Add	0,0	3,5	7,1	10,3	16,2	20,3	21,0	20,9	17,0	11,4	6,0	1,4
Add-Esterno	-0,1	3,4	7,0	10,3	16,2	20,3	21,0	20,9	17,0	11,4	5,9	1,3

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. E/F												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]												

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente Gc: 0,0000 (mese di -) kg/m 2 nell'interfaccia -

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia Gc,max: 0,5000 kg/m²

Quantità di vapore residuo Ma: 0,0000 (mese di -) kg/m² nell'interfaccia -

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA fennián mairo 8 6 5 6 6 8 8 ģ 8 ģ Gennaio Febbraio Marzo арі le тадоја giugna 8 ts 5 5 6 6 8 5 5 5 6 **4** 8 8 Aprile Maggio Giugno lugia agasto settemble 8 6 8 6 6 6 Luglio Settembre Agosto attable dicembre. navem Die 8 5 5 5 6 **6** 8 6 8 6 6 6 Ottobre Dicembre Novembre LEGENDA Temperatura [°C] Pressione del vapore [Pa] Press. di saturazione [Pa]

VERIFICA DI MASSA E INERZIA TERMICA

Il comportamento termico dinamico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13786.

Verifica di massa:

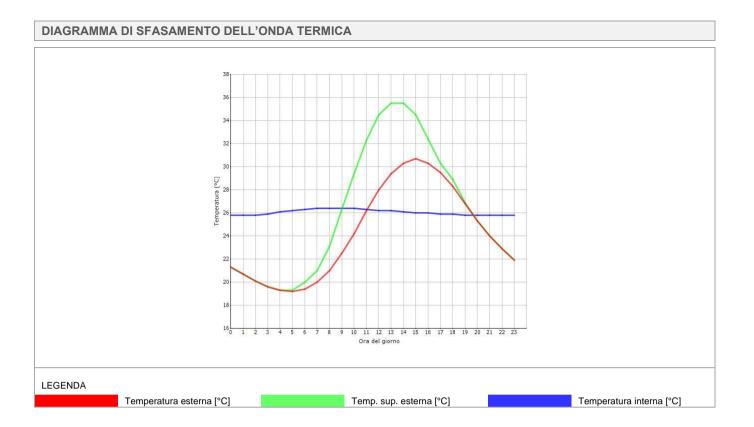
Massa della struttura per metro quadrato di superficie: 770 kg/m²

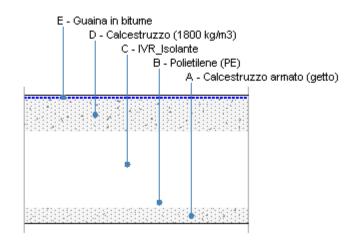
Valore minimo di massa superficiale: 230 kg/m 2

ESITO VERIFICA DI MASSA: OK

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

CONDIZIONI AL CONTORNO


Comune:	Inveruno	Colorazione:	<u>Chiaro</u>
Orientamento:	<u>s</u>	Mese massima insolazione:	luglio
Temp. media mese massima insolaz.:	24,3 °C	Temperatura massima estiva:	30,7 °C
Escursione giorno più caldo dell'anno:	11,5 °C	Irradian. mensile massima piano orizz.:	275,46 W/m²


INERZIA TERMICA

Tempo sfasamento dell'onda termica:	18h 42'	Fattore di attenuazione:	0,0423
Capacità termica interna C1:	95,6 kJ/(m ² /K)	Capacità termica esterna C2:	21,0 kJ/(m ² /K)
Ammettenza interna oraria:	13,0 W/(m ² /K)	Ammettenza interna in modulo:	7,0 W/(m ² /K)
Ammettenza esterna oraria:	15,0 W/(m ² /K)	Ammettenza esterna in modulo:	1,5 W/(m ² /K)
Trasmittanza termica periodica Y:	0,005 W/(m ² K)	Classificazione struttura da normativa:	
Trasmitt. termica periodica limite Ylim:	0,180 W/(m ² K)		

ESITO VERIFICA DI INERZIA: OK

	Temperatura esterna nel giorno più caldo Te	Irradiazione solare nel giorno più caldo dell'anno le	Temp. superficiale esterna nel giorno più caldo Te,sup	Temperatura interna nel giorno più caldo Ti
Ora	°C	W/m²	°C	°C
0:00	21,26	0,00	21,26	25,76
1:00	20,68	0,00	20,68	25,79
2:00	20,11	0,00	20,11	25,83
3:00	19,65	0,00	19,65	25,92
4:00	19,30	0,00	19,30	26,06
5:00	19,19	10,00	19,31	26,19
6:00	19,42	49,00	20,01	26,31
7:00	19,99	85,75	21,02	26,40
8:00	21,03	173,00	23,10	26,45
9:00	22,52	315,75	26,31	26,45
10:00	24,25	432,75	29,44	26,40
11:00	26,20	508,25	32,30	26,32
12:00	28,04	534,25	34,45	26,23
13:00	29,42	508,25	35,52	26,17
14:00	30,34	432,75	35,54	26,08
15:00	30,69	315,75	34,48	26,02
16:00	30,34	173,00	32,42	25,96
17:00	29,54	66,50	30,34	25,91
18:00	28,27	49,50	28,87	25,87
19:00	26,78	10,00	26,90	25,84
20:00	25,28	0,00	25,28	25,82
21:00	24,02	0,00	24,02	25,80
22:00	22,87	0,00	22,87	25,78
23:00	21,95	0,00	21,95	25,76

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: Inveruno_COP02a

Note:

Tipologia:	<u>Copertura</u>	Disposizione:	<u>Orizzontale</u>
Verso:	<u>Esterno</u>	Spessore:	388,0 mm
Trasmittanza U:	0,132 W/(m ² K)	Resistenza R:	7,548 (m ² K)/W
Massa superf.:	345 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità term. C	Fattore μa	Fattore μυ
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso verticale ascendente)	-	-	0,100	-	-	-	-
А	Calcestruzzo armato (getto)	50,0	1,910	0,026	2.400	1,00	0,0	999.99 9,0
В	Polietilene (PE)	30,0	0,350	0,086	950	2,30	54.054 ,1	54.054
С	IVR_Isolante	200,0	0,028	7,143	35	1,40	56,0	56,0
D	Calcestruzzo (1800 kg/m3)	100,0	0,940	0,106	1.800	0,88	3,3	3,3
E	Guaina in bitume	8,0	0,170	0,047	1.200	0,92	20.222	90.222
	Adduttanza esterna (flusso verticale ascendente)	-	-	0,040	-	-	-	-
	TOTALE	388,0		7,548				

Conduttanza unitaria superficiale interna: 10,000 W/(m²K)

Resistenza unitaria superficiale interna: 0,100 (m²K)/W

Conduttanza unitaria superficiale esterna: 25,000 W/(m²K)

Resistenza unitaria superficiale esterna: 0,040 (m²K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	<u>Inveruno</u>	Zona climatica:	<u>E</u>
Trasmittanza della struttura U:	0,132 W/(m ² K)	Trasmittanza limite Ulim:	0,220 W/(m ² K)

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

ESITO VERIFICA DI TRASMITTANZA: -

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	<u>Inveruno</u>	Tipo di calcolo:	Classi di concentrazione	
Verso:	<u>Esterno</u>	Coeff. di correzione btr,x:		
Classe di edificio:	Edifici con indice di affollamento non	Volume interno V:	- m3	
Classe di edificio.	noto	volume interno v.	- 1110	
Produz. nota di vapore G:	- kg/h			

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	-	-0,1	84,9	0,5
febbraio	20,0	-	3,4	74,0	0,5
marzo	20,0	-	7,0	63,4	0,5
aprile	20,0	-	10,3	66,4	0,5
maggio	20,0	-	16,2	72,9	0,5
giugno	20,0	-	20,3	70,5	0,5
luglio	20,0	-	21,0	64,3	0,5
agosto	20,0	-	20,9	66,1	0,5
settembre	20,0	-	17,0	71,8	0,5
ottobre	20,0	-	11,4	90,7	0,5
novembre	20,0	-	5,9	94,7	0,5
dicembre	20,0	-	1,3	85,6	0,5

CONDIZIONE	Temperatura interna θi	Pressione parziale interna pi	Temperatura esterna θe	Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	-0,10	514,20
ESTIVA	20,00	1.615,60	21,00	1.597,60

X	La struttura non è soggetta a fenomeni di condensa interstiziale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 570,739 Pa.
	La struttura è soggetta a fenomeni di condensa.
	La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).
X	La struttura non è soggetta a fenomeni di condensa superficiale.
	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 570,739 Pa.

VERIFICA FORMAZIONE MUFFE SUPERFICIALI

CONDIZIONI AL CONTORNO INTERNE ED ESTERNE

Mese	Temperatura esterna Te °C	Pressione esterna Pe Pa	Variazione di pressione ΔP Pa	Pressione interna Pi Pa	Temperatura interna Ti °C	Umidità relativa interna φi %
ottobre	11,4	1221,38	405,3	1626,68	20	91
novembre	5,9	878,74	600,55	1479,29	20	95
dicembre	1,3	574,43	763,85	1338,28	20	86
gennaio	-0,1	514,17	810	1324,17	20	85
febbraio	3,4	576,19	689,3	1265,49	20	74
marzo	7,0	634,73	561,5	1196,23	20	63
aprile	10,3	831,79	444,35	1276,14	20	66

CALCOLO DEL FATTORE DI RISCHIO

La verifica della formazione di muffa è eseguita in maniera conforme a quanto riportato nella norma UNI EN ISO 13788

	Temperatura superficiale critica T _S i-critica	Fattore di rischio ammissibile frsi- amm
Mese	°C	-

ottobre	17,77	0,7408
novembre	16,27	0,7356
dicembre	14,71	0,7171
gennaio	14,55	0,7287
febbraio	13,85	0,6293
marzo	12,98	0,4602
aprile	13,98	0,3789

Riepilogo dei risultati:

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione

Fattore di resistenza superficiale fRsi: 0,7408 (mese di Ottobre)

Fattore di resistenza superficiale ammissibile massimo fRsiAmm: 0,9828

ESITO VERIFICA DI MUFFA: OK

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.324,2	1.265,5	1.196,2	1.276,1	1.577,5	1.766,8	1.662,1	1.700,1	1.596,5	1.626,7	1.479,3	1.338,3
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.324,2	1.265,5	1.196,2	1.276,1	1.577,5	1.766,8	1.662,1	1.700,1	1.596,5	1.626,7	1.479,3	1.338,3
	2.288,8	2.297,1	2.305,7	2.313,6	2.327,8	2.337,7	2.339,4	2.339,1	2.329,7	2.316,2	2.303,1	2.292,1
A-B	592,4	642,7	688,9	874,7	1.365,3	1.686,1	1.603,8	1.638,6	1.409,9	1.260,5	936,7	648,2
	2.256,6	2.270,4	2.284,7	2.297,9	2.321,6	2.338,2	2.341,0	2.340,6	2.324,8	2.302,3	2.280,3	2.262,1
В-С	587,3	638,4	685,4	871,9	1.363,8	1.685,5	1.603,4	1.638,2	1.408,6	1.258,0	933,0	643,4
	629,2	802,9	1.024,5	1.273,2	1.852,1	2.379,6	2.481,7	2.466,9	1.946,1	1.367,1	951,7	694,2
C-D	587,2	638,3	685,3	871,8	1.363,7	1.685,5	1.603,4	1.638,2	1.408,6	1.257,9	932,9	643,3
	616,4	789,8	1.011,7	1.261,6	1.845,8	2.380,2	2.483,8	2.468,8	1.940,9	1.356,2	938,7	681,2
D-E	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	610,8	784,0	1.006,1	1.256,5	1.843,0	2.380,5	2.484,8	2.469,6	1.938,6	1.351,4	933,0	675,5
E-Add	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	605,5	779,2	1.001,3	1.252,2	1.840,6	2.380,7	2.485,6	2.470,4	1.936,6	1.347,3	928,2	670,7

TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	19,7	19,8	19,8	19,9	19,9	20,0	20,0	20,0	20,0	19,9	19,8	19,8
A-B	19,7	19,7	19,8	19,8	19,9	20,0	20,0	20,0	19,9	19,9	19,8	19,7
B-C	19,4	19,5	19,6	19,7	19,9	20,0	20,0	20,0	19,9	19,8	19,6	19,5
C-D	0,4	3,8	7,3	10,5	16,3	20,3	21,0	20,9	17,1	11,6	6,3	1,8
D-E	0,1	3,6	7,1	10,4	16,2	20,3	21,0	20,9	17,0	11,5	6,1	1,5
E-Add	0,0	3,5	7,1	10,4	16,2	20,3	21,0	20,9	17,0	11,4	6,0	1,4
Add-Esterno	-0,1	3,4	7,0	10,3	16,2	20,3	21,0	20,9	17,0	11,4	5,9	1,3

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. E/F												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]												

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente Gc: 0,0000 (mese di -) kg/m^2 nell'interfaccia -

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia Gc,max: 0,5000 kg/m²

Quantità di vapore residuo Ma: 0,0000 (mese di -) kg/m² nell'interfaccia -

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA fennián mairo 8 6 5 6 6 8 8 ģ 8 Gennaio Febbraio Marzo арі le тадоја giugna 8 ts 5 5 6 6 8 5 5 5 6 **4** 8 8 8 Aprile Maggio Giugno lugia agasto settemble 8 6 8 6 6 6 8 6 8 6 6 6 Luglio Settembre Agosto attable dicembre. navem Die 8 5 5 5 6 **6** Ottobre Dicembre Novembre LEGENDA Temperatura [°C] Pressione del vapore [Pa] Press. di saturazione [Pa]

VERIFICA DI MASSA E INERZIA TERMICA

Il comportamento termico dinamico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13786.

Verifica di massa:

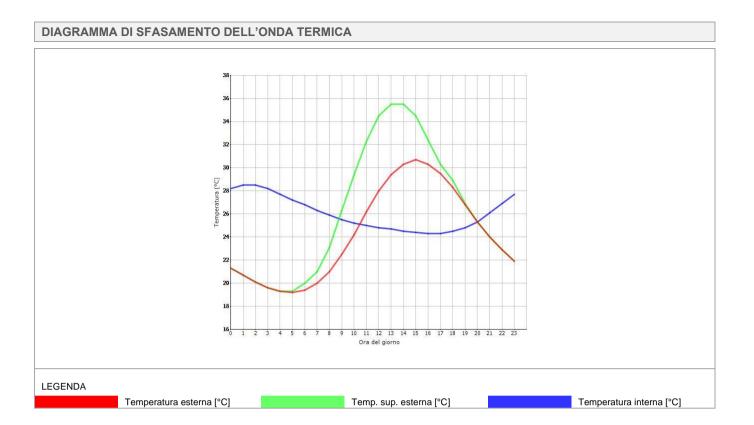
Massa della struttura per metro quadrato di superficie: 345 kg/m²

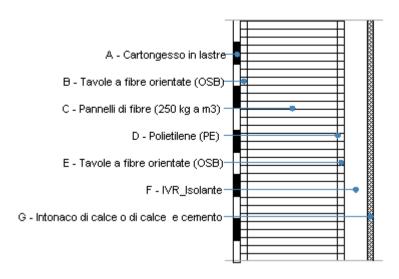
Valore minimo di massa superficiale: 230 kg/m 2

ESITO VERIFICA DI MASSA: OK

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

CONDIZIONI AL CONTORNO


Comune:	Inveruno	Colorazione:	Chiaro
Orientamento:	<u>s</u>	Mese massima insolazione:	luglio
Temp. media mese massima insolaz.:	24,3 °C	Temperatura massima estiva:	30,7 °C
Escursione giorno più caldo dell'anno:	11,5 °C	Irradian. mensile massima piano orizz.:	275,46 W/m ²


INERZIA TERMICA

Tempo sfasamento dell'onda termica:	12h 13'	Fattore di attenuazione:	0,2581
Capacità termica interna C1:	99,0 kJ/(m ² /K)	Capacità termica esterna C2:	94,6 kJ/(m ² /K)
Ammettenza interna oraria:	14,2 W/(m ² /K)	Ammettenza interna in modulo:	7,2 W/(m ² /K)
Ammettenza esterna oraria:	14,4 W/(m ² /K)	Ammettenza esterna in modulo:	6,9 W/(m ² /K)
Trasmittanza termica periodica Y:	0,034 W/(m ² K)	Classificazione struttura da normativa:	
Trasmitt. termica periodica limite Ylim:	0,180 W/(m ² K)		

ESITO VERIFICA DI INERZIA: OK

	Temperatura esterna nel giorno più caldo Te	Irradiazione solare nel giorno più caldo dell'anno le	Temp. superficiale esterna nel giorno più caldo Te,sup	Temperatura interna nel giorno più caldo Ti
Ora	°C	W/m²	°C	°C
0:00	21,26	0,00	21,26	28,22
1:00	20,68	0,00	20,68	28,49
2:00	20,11	0,00	20,11	28,50
3:00	19,65	0,00	19,65	28,22
4:00	19,30	0,00	19,30	27,69
5:00	19,19	10,00	19,31	27,15
6:00	19,42	49,00	20,01	26,78
7:00	19,99	85,75	21,02	26,27
8:00	21,03	173,00	23,10	25,85
9:00	22,52	315,75	26,31	25,52
10:00	24,25	432,75	29,44	25,23
11:00	26,20	508,25	32,30	24,99
12:00	28,04	534,25	34,45	24,81
13:00	29,42	508,25	35,52	24,66
14:00	30,34	432,75	35,54	24,51
15:00	30,69	315,75	34,48	24,40
16:00	30,34	173,00	32,42	24,31
17:00	29,54	66,50	30,34	24,31
18:00	28,27	49,50	28,87	24,49
19:00	26,78	10,00	26,90	24,75
20:00	25,28	0,00	25,28	25,29
21:00	24,02	0,00	24,02	26,12
22:00	22,87	0,00	22,87	26,92
23:00	21,95	0,00	21,95	27,66

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: Inveruno_CV01a

Note:

Tipologia:	<u>Parete</u>	Disposizione:	<u>Verticale</u>
Verso:	<u>Esterno</u>	Spessore:	311,0 mm
Trasmittanza U:	0,195 W/(m ² K)	Resistenza R:	5,135 (m ² K)/W
Massa superf.:	86 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore	Conduttività	Resistenza	Densità	Capacità term.	Fattore	Fattore
	Strato	s	λ	R	ρ	С	μа	μи
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-		-	-
Α	Cartongesso in lastre	15,0	0,210	0,071	900	1,30	8,7	8,7
В	Tavole a fibre orientate (OSB)	15,0	0,130	0,115	650	1,70	50,0	30,0
С	Pannelli di fibre (250 kg a m3)	200,0	0,070	2,857	250	1,70	5,0	2,0
D	Polietilene (PE)	1,0	0,350	0,003	950	2,30	54.054 ,1	54.054 ,1
Е	Tavole a fibre orientate (OSB)	15,0	0,130	0,115	650	1,70	50,0	30,0
F	IVR_Isolante	50,0	0,028	1,786	35	1,40	56,0	56,0
G	Intonaco di calce o di calce e cemento	15,0	0,900	0,017	1.800	0,84	16,7	16,7
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-		-	_
	TOTALE	311,0		5,135				

Conduttanza unitaria superficiale interna: 7,690 W/(m²K)

Resistenza unitaria superficiale interna: 0,130 (m²K)/W

Conduttanza unitaria superficiale esterna: 25,000 W/(m²K)

Resistenza unitaria superficiale esterna: 0,040 (m²K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	<u>Inveruno</u>	Zona climatica:	<u>E</u>
Trasmittanza della struttura U:	0,195 W/(m ² K)	Trasmittanza limite Ulim:	0,260 W/(m ² K)

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

ESITO VERIFICA DI TRASMITTANZA: -

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	Inveruno	Tipo di calcolo:	Classi di concentrazione
Verso:	<u>Esterno</u>	Coeff. di correzione btr,x:	
Classe di edificio:	Edifici con indice di affollamento non	Volume interno V:	- m ³
Classe di edilicio.	noto	volume interno v.	- 1110
Produz. nota di vapore G:	- kg/h		

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	-	-0,1	84,9	0,5
febbraio	20,0	-	3,4	74,0	0,5
marzo	20,0	-	7,0	63,4	0,5
aprile	20,0	-	10,3	66,4	0,5
maggio	20,0	-	16,2	72,9	0,5
giugno	20,0	-	20,3	70,5	0,5
luglio	20,0	-	21,0	64,3	0,5
agosto	20,0	-	20,9	66,1	0,5
settembre	20,0	-	17,0	71,8	0,5
ottobre	20,0	-	11,4	90,7	0,5
novembre	20,0	-	5,9	94,7	0,5
dicembre	20,0	-	1,3	85,6	0,5

CONDIZIONE	Temperatura interna θi	Pressione parziale interna pi	Temperatura esterna θe	Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	-0,10	514,20
ESTIVA	20,00	1.615,60	21,00	1.597,60

	La struttura non è soggetta a fenomeni di condensa interstiziale.
	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 0 Pa.
X	La struttura è soggetta a fenomeni di condensa.
^	La quantità stagionale di vapore condensato è pari a 0,182 kg/m² (rievaporabile durante il periodo estivo).
X	La struttura non è soggetta a fenomeni di condensa superficiale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 571,264 Pa.

VERIFICA FORMAZIONE MUFFE SUPERFICIALI

CONDIZIONI AL CONTORNO INTERNE ED ESTERNE

Mass	Temperatura esterna Te	Pressione esterna Pe	Variazione di pressione ΔP	Pressione interna Pi	Temperatura interna Ti	Umidità relativa interna φi
Mese	°C	Pa	Pa	Pa	°C	%
ottobre	11,4	1221,38	405,3	1626,68	20	91
novembre	5,9	878,74	600,55	1479,29	20	95
dicembre	1,3	574,43	763,85	1338,28	20	86
gennaio	-0,1	514,17	810	1324,17	20	85
febbraio	3,4	576,19	689,3	1265,49	20	74
marzo	7,0	634,73	561,5	1196,23	20	63
aprile	10,3	831,79	444,35	1276,14	20	66

CALCOLO DEL FATTORE DI RISCHIO

La verifica della formazione di muffa è eseguita in maniera conforme a quanto riportato nella norma UNI EN ISO 13788

	Temperatura superficiale critica Tsi-critica	Fattore di rischio ammissibile frsi- amm
Mese	°C	-

ottobre	17,77	0,7408
novembre	16,27	0,7356
dicembre	14,71	0,7171
gennaio	14,55	0,7287
febbraio	13,85	0,6293
marzo	12,98	0,4602
aprile	13,98	0,3789

Riepilogo dei risultati:

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione

Fattore di resistenza superficiale fRsi: 0,7408 (mese di Ottobre)

Fattore di resistenza superficiale ammissibile massimo fRsiAmm: 0,9747

ESITO VERIFICA DI MUFFA: OK

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.324,2	1.265,5	1.196,2	1.276,1	1.577,5	1.766,8	1.662,1	1.700,1	1.596,5	1.626,7	1.479,3	1.338,3
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.322,4	1.264,0	1.195,0	1.275,2	1.577,0	1.766,6	1.662,0	1.700,0	1.596,0	1.625,8	1.478,0	1.336,6
	2.225,3	2.244,4	2.264,2	2.282,5	2.315,5	2.338,7	2.342,6	2.342,1	2.320,0	2.288,6	2.258,1	2.232,9
A-B	1.312,2	1.255,3	1.188,0	1.269,6	1.574,0	1.765,5	1.661,1	1.699,1	1.593,4	1.620,7	1.470,4	1.327,0
	2.163,4	2.192,8	2.223,4	2.251,8	2.303,2	2.339,6	2.345,9	2.345,0	2.310,3	2.261,3	2.214,0	2.175,1
B-C	1.298,7	1.243,8	1.178,6	1.262,2	1.570,1	1.764,0	1.660,1	1.698,0	1.590,0	1.613,9	1.460,4	1.314,2
	1.041,6	1.206,0	1.398,5	1.598,1	2.018,0	2.363,9	2.427,9	2.418,7	2.081,8	1.670,0	1.337,0	1.104,8
C-D	565,7	620,0	670,4	860,1	1.357,5	1.683,1	1.601,7	1.636,4	1.403,1	1.247,2	916,9	623,0
	1.040,8	1.205,2	1.397,8	1.597,6	2.017,7	2.363,9	2.428,0	2.418,7	2.081,6	1.669,5	1.336,3	1.104,0
D-E	555,5	611,4	663,4	854,5	1.354,6	1.682,0	1.600,9	1.635,5	1.400,5	1.242,1	909,4	613,4
	1.009,1	1.175,4	1.371,1	1.575,1	2.006,9	2.364,9	2.431,3	2.421,7	2.072,8	1.648,8	1.308,5	1.072,9
E-F	517,6	579,1	637,1	833,7	1.343,6	1.677,8	1.597,9	1.632,3	1.390,8	1.223,1	881,3	577,6
	615,9	789,3	1.011,2	1.261,2	1.845,6	2.380,2	2.483,9	2.468,8	1.940,7	1.355,8	938,2	680,8
F-G	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	613,0	786,3	1.008,3	1.258,5	1.844,1	2.380,4	2.484,4	2.469,3	1.939,5	1.353,3	935,3	677,8
G-Add	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	605,5	779,2	1.001,3	1.252,2	1.840,6	2.380,7	2.485,6	2.470,4	1.936,6	1.347,3	928,2	670,7

TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	19,5	19,6	19,7	19,8	19,9	20,0	20,0	20,0	19,9	19,8	19,6	19,5
A-B	19,2	19,3	19,5	19,6	19,9	20,0	20,0	20,0	19,9	19,7	19,4	19,3
В-С	18,8	19,0	19,2	19,4	19,8	20,0	20,1	20,1	19,8	19,5	19,1	18,8
C-D	7,6	9,7	12,0	14,0	17,7	20,2	20,6	20,6	18,1	14,7	11,3	8,4
D-E	7,6	9,7	12,0	14,0	17,6	20,2	20,6	20,6	18,1	14,7	11,3	8,4
E-F	7,1	9,4	11,7	13,8	17,6	20,2	20,6	20,6	18,1	14,5	11,0	8,0
F-G	0,1	3,6	7,1	10,4	16,2	20,3	21,0	20,9	17,0	11,5	6,1	1,5
G-Add	0,1	3,5	7,1	10,4	16,2	20,3	21,0	20,9	17,0	11,5	6,0	1,4
Add-Esterno	-0,1	3,4	7,0	10,3	16,2	20,3	21,0	20,9	17,0	11,4	5,9	1,3

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. C/D												
Gc [Kg/m²]	0,0756	0,0100	-0,0647	-0,0956	-0,1317	0,0000	0,0000	0,0000	0,0000	0,0000	0,0351	0,0616
Ma [Kg/m²]	0,1723	0,1824	0,1177	0,0221	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0351	0,0967
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. E/F												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. F/G												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. G/H												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]												

gennaio - Interf. C/D. Formazione di condensa: 0,1723 kg/m²

febbraio - Interf. C/D. Formazione di condensa: $0,1824\ kg/m^2$

marzo - Interf. C/D. Formazione di condensa: $0,1177\ kg/m^2$

aprile - Interf. C/D. Formazione di condensa: 0,0221 kg/m²

novembre - Interf. C/D. Formazione di condensa: $0,0351 \text{ kg/m}^2$

dicembre - Interf. C/D. Formazione di condensa: 0,0967 kg/m²

Mese condensazione massima: febbraio

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente G_{C} : 0,0756 (mese di gennaio) kg/m 2 nell'interfaccia C-D

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia Gc,max: 0,5000 kg/m²

Quantità di vapore residuo Ma: 0,1824 (mese di febbraio) kg/m² nell'interfaccia C-D

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Interfaccia C-D - Formazione di condensa: 0,1824 kg/m²

DIAGRAMMI DI PRESSIONE E TEMPERATURA Fl^{2,500} p2.500 p2.500 20_F 2000 2,000 2,000 1.500 1500 1.500 1,000 1,000 Febbraio Gennaio Marzo apile т*а*доја giugna 2.500 2,000 1,500 H1.500 H1.000 1,000 El₅₀₀ E]500 Aprile Maggio Giugno settemble lugio agasto 2.500 2000 1500 1,000 E|500 Luglio Agosto Settembre attable navem Die doemble 2.000 2,000 5 H1500 1,500 1500 H1.000 H1.000 1,000 Ottobre Novembre Dicembre LEGENDA Temperatura [°C] Pressione del vapore [Pa] Press. di saturazione [Pa]

VERIFICA DI MASSA E INERZIA TERMICA

Il comportamento termico dinamico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13786.

Verifica di massa:

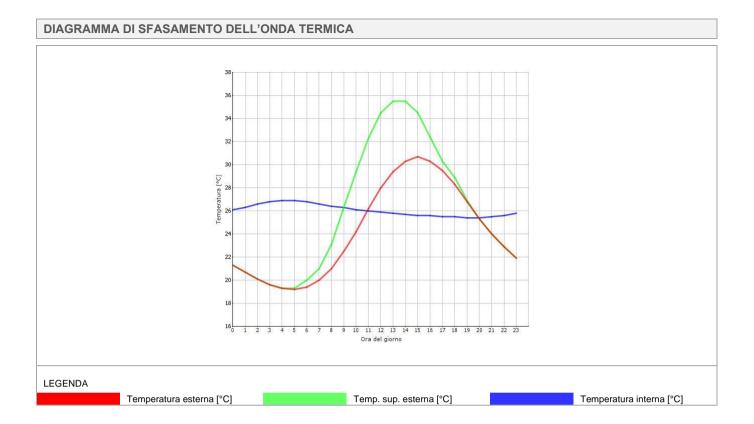
Massa della struttura per metro quadrato di superficie: 86 kg/m²

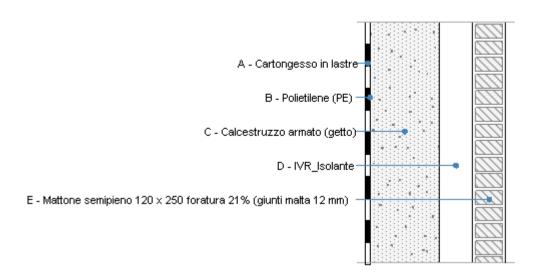
Valore minimo di massa superficiale: 230 kg/m 2

ESITO VERIFICA DI MASSA: OK

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

CONDIZIONI AL CONTORNO


Comune:	Inveruno	Colorazione:	<u>Chiaro</u>
Orientamento:	<u>s</u>	Mese massima insolazione:	luglio
Temp. media mese massima insolaz.:	24,3 °C	Temperatura massima estiva:	30,7 °C
Escursione giorno più caldo dell'anno:	11,5 °C	Irradian. mensile massima piano orizz.:	275,46 W/m ²


INERZIA TERMICA

Tempo sfasamento dell'onda termica:	15h 16'	Fattore di attenuazione:	0,0887
Capacità termica interna C1:	$34,2 \text{ kJ/(m}^2/\text{K})$	Capacità termica esterna C2:	24,9 kJ/(m ² /K)
Ammettenza interna oraria:	15,0 W/(m ² /K)	Ammettenza interna in modulo:	2,5 W/(m ² /K)
Ammettenza esterna oraria:	16,7 W/(m ² /K)	Ammettenza esterna in modulo:	1,8 W/(m ² /K)
Trasmittanza termica periodica Y:	0,017 W/(m ² K)	Classificazione struttura da normativa:	
Trasmitt. termica periodica limite Ylim:	0,100 W/(m ² K)		

ESITO VERIFICA DI INERZIA: OK

	Temperatura esterna nel giorno più caldo Te	Irradiazione solare nel giorno più caldo dell'anno le	Temp. superficiale esterna nel giorno più caldo Te,sup	Temperatura interna nel giorno più caldo Ti
Ora	°C	W/m²	°C	°C
0:00	21,26	0,00	21,26	26,07
1:00	20,68	0,00	20,68	26,35
2:00	20,11	0,00	20,11	26,60
3:00	19,65	0,00	19,65	26,79
4:00	19,30	0,00	19,30	26,89
5:00	19,19	10,00	19,31	26,89
6:00	19,42	49,00	20,01	26,80
7:00	19,99	85,75	21,02	26,61
8:00	21,03	173,00	23,10	26,43
9:00	22,52	315,75	26,31	26,30
10:00	24,25	432,75	29,44	26,12
11:00	26,20	508,25	32,30	25,98
12:00	28,04	534,25	34,45	25,87
13:00	29,42	508,25	35,52	25,77
14:00	30,34	432,75	35,54	25,68
15:00	30,69	315,75	34,48	25,62
16:00	30,34	173,00	32,42	25,57
17:00	29,54	66,50	30,34	25,52
18:00	28,27	49,50	28,87	25,48
19:00	26,78	10,00	26,90	25,45
20:00	25,28	0,00	25,28	25,45
21:00	24,02	0,00	24,02	25,51
22:00	22,87	0,00	22,87	25,60
23:00	21,95	0,00	21,95	25,79

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: Inveruno_CV02a

Note:

Tipologia:	<u>Parete</u>	Disposizione:	<u>Verticale</u>
Verso:	<u>Esterno</u>	Spessore:	<u>506,0</u> mm
Trasmittanza U:	0,206 W/(m ² K)	Resistenza R:	4,851 (m ² K)/W
Massa superf.:	835 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore	Conduttività	Resistenza	Densità	Capacità term.	Fattore	Fattore
	Suate	s	λ	R	ρ	С	μа	μи
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-	-
Α	Cartongesso in lastre	15,0	0,210	0,071	900	1,30	8,7	8,7
В	Polietilene (PE)	1,0	0,350	0,003	950	2,30	54.054	54.054
ь	Polletilerie (PE)	1,0	0,350	0,003	950	2,30	,1	,1
С	Calcostruzza armata (gatta)	250,0	1,910	0,131	2.400	1,00	0,0	999.99
	Calcestruzzo armato (getto)	250,0	1,910	0,131	2.400	1,00	0,0	9,0
D	IVR_Isolante	120,0	0,028	4,286	35	1,40	56,0	56,0
Е	Mattone semipieno 120 x 250 foratura 21% (giunti	400.0	0.000	0.400	4.000	4.00	40.0	5.0
	malta 12 mm)	120,0	0,632	0,190	1.800	1,00	10,0	5,0
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-			_
	TOTALE	506,0		4,851				

Conduttanza unitaria superficiale interna: 7,690 W/(m²K)

Resistenza unitaria superficiale interna: 0,130 (m²K)/W

Conduttanza unitaria superficiale esterna: 25,000 W/(m²K)

Resistenza unitaria superficiale esterna: 0,040 (m²K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	<u>Inveruno</u>	Zona climatica:	<u>E</u>
Trasmittanza della struttura U:	0,206 W/(m ² K)	Trasmittanza limite Ulim:	0,260 W/(m ² K)

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

ESITO VERIFICA DI TRASMITTANZA: -

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	Inveruno	Tipo di calcolo:	Classi di concentrazione
Verso:	<u>Esterno</u>	Coeff. di correzione btr,x:	
Classe di adificia	Edifici con indice di affollamento non	Volume interno V:	- m3
Classe di edificio:	noto	volume interno v.	- 1110
Produz. nota di vapore G:	- kg/h		

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	-	-0,1	84,9	0,5
febbraio	20,0	-	3,4	74,0	0,5
marzo	20,0	-	7,0	63,4	0,5
aprile	20,0	-	10,3	66,4	0,5
maggio	20,0	-	16,2	72,9	0,5
giugno	20,0	-	20,3	70,5	0,5
luglio	20,0	-	21,0	64,3	0,5
agosto	20,0	-	20,9	66,1	0,5
settembre	20,0	-	17,0	71,8	0,5
ottobre	20,0	-	11,4	90,7	0,5
novembre	20,0	-	5,9	94,7	0,5
dicembre	20,0	-	1,3	85,6	0,5

CONDIZIONE	Temperatura interna θi	Pressione parziale interna pi	Temperatura esterna θe	Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	-0,10	514,20
ESTIVA	20,00	1.615,60	21,00	1.597,60

X	La struttura non è soggetta a fenomeni di condensa interstiziale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 571,328 Pa.
	La struttura è soggetta a fenomeni di condensa.
	La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).
×	La struttura non è soggetta a fenomeni di condensa superficiale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 571,328 Pa.

VERIFICA FORMAZIONE MUFFE SUPERFICIALI

CONDIZIONI AL CONTORNO INTERNE ED ESTERNE

Mese	Temperatura esterna Te °C	Pressione esterna Pe Pa	Variazione di pressione ΔP Pa	Pressione interna Pi Pa	Temperatura interna Ti °C	Umidità relativa interna φi %
ottobre	11,4	1221,38	405,3	1626,68	20	91
novembre	5,9	878,74	600,55	1479,29	20	95
dicembre	1,3	574,43	763,85	1338,28	20	86
gennaio	-0,1	514,17	810	1324,17	20	85
febbraio	3,4	576,19	689,3	1265,49	20	74
marzo	7,0	634,73	561,5	1196,23	20	63
aprile	10,3	831,79	444,35	1276,14	20	66

CALCOLO DEL FATTORE DI RISCHIO

La verifica della formazione di muffa è eseguita in maniera conforme a quanto riportato nella norma UNI EN ISO 13788

	Temperatura superficiale critica Tsi-critica	Fattore di rischio ammissibile frsi- amm
Mese	°C	-

ottobre	17,77	0,7408
novembre	16,27	0,7356
dicembre	14,71	0,7171
gennaio	14,55	0,7287
febbraio	13,85	0,6293
marzo	12,98	0,4602
aprile	13,98	0,3789

Riepilogo dei risultati:

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione

Fattore di resistenza superficiale fRsi: 0,7408 (mese di Ottobre)

Fattore di resistenza superficiale ammissibile massimo fRsiAmm: 0,9732

ESITO VERIFICA DI MUFFA: OK

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.324,2	1.265,5	1.196,2	1.276,1	1.577,5	1.766,8	1.662,1	1.700,1	1.596,5	1.626,7	1.479,3	1.338,3
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.322,5	1.264,0	1.195,0	1.275,2	1.577,0	1.766,6	1.662,0	1.700,0	1.596,0	1.625,8	1.478,0	1.336,7
	2.218,9	2.239,1	2.260,0	2.279,3	2.314,2	2.338,8	2.343,0	2.342,4	2.319,0	2.285,8	2.253,6	2.226,9
A-B	617,5	664,1	706,3	888,5	1.372,5	1.688,8	1.605,8	1.640,7	1.416,3	1.273,1	955,3	671,8
	2.217,3	2.237,7	2.258,9	2.278,5	2.313,9	2.338,8	2.343,1	2.342,4	2.318,7	2.285,1	2.252,4	2.225,4
B-C	617,5	664,1	706,3	888,5	1.372,5	1.688,8	1.605,8	1.640,7	1.416,3	1.273,1	955,3	671,8
	2.143,4	2.176,1	2.210,1	2.241,7	2.299,2	2.340,0	2.347,0	2.346,0	2.307,1	2.252,4	2.199,7	2.156,4
C-D	529,8	589,5	645,6	840,4	1.347,1	1.679,2	1.598,8	1.633,4	1.393,9	1.229,2	890,3	589,2
	649,5	823,6	1.044,5	1.291,2	1.861,9	2.378,6	2.478,4	2.463,9	1.954,2	1.384,1	972,1	714,8
D-E	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	613,4	786,7	1.008,7	1.258,9	1.844,3	2.380,3	2.484,3	2.469,2	1.939,7	1.353,6	935,7	678,2
E-Add	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	605,5	779,2	1.001,3	1.252,2	1.840,6	2.380,7	2.485,6	2.470,4	1.936,6	1.347,3	928,2	670,7

TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	19,5	19,6	19,7	19,7	19,9	20,0	20,0	20,0	19,9	19,8	19,6	19,5
A-B	19,2	19,3	19,5	19,6	19,8	20,0	20,0	20,0	19,9	19,6	19,4	19,2
B-C	19,2	19,3	19,5	19,6	19,8	20,0	20,0	20,0	19,9	19,6	19,4	19,2
C-D	18,6	18,9	19,1	19,3	19,7	20,0	20,1	20,1	19,8	19,4	19,0	18,7
D-E	0,9	4,2	7,6	10,8	16,4	20,3	21,0	20,9	17,1	11,8	6,6	2,2
E-Add	0,1	3,5	7,1	10,4	16,2	20,3	21,0	20,9	17,0	11,5	6,0	1,5
Add-Esterno	-0,1	3,4	7,0	10,3	16,2	20,3	21,0	20,9	17,0	11,4	5,9	1,3

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. E/F												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]												

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente Gc: 0,0000 (mese di -) kg/m 2 nell'interfaccia -

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia Gc,max: 0,5000 kg/m²

Quantità di vapore residuo Ma: 0,0000 (mese di -) kg/m² nell'interfaccia -

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA Fl^{2,500} p2.500 p2.500 20_F 2,000 2,000 2,000 1.500 1500 1.500 1,000 1,000 Febbraio Gennaio Marzo арі le т*а*доја giugna 2.500 2,000 5 1,500 H1.500 H1.000 1,000 El₅₀₀ E]500 Aprile Maggio Giugno settemble lugia agasto 2.500 2000 H1500 1,000 E|500 Luglio Agosto Settembre dæmbe attable navem Die 2,000 2,000 5 1.500 1500 1500 H1.000 H1.000 1,000 Ottobre Novembre Dicembre LEGENDA Temperatura [°C] Pressione del vapore [Pa] Press. di saturazione [Pa]

VERIFICA DI MASSA E INERZIA TERMICA

Il comportamento termico dinamico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13786.

Verifica di massa:

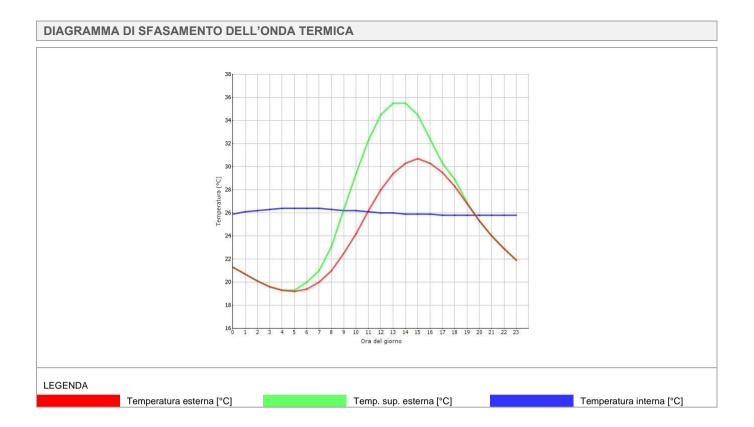
Massa della struttura per metro quadrato di superficie: 835 kg/m²

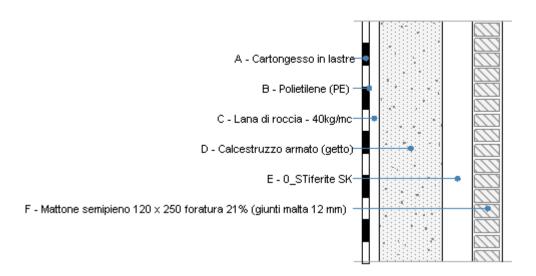
Valore minimo di massa superficiale: 230 kg/m 2

ESITO VERIFICA DI MASSA: OK

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

CONDIZIONI AL CONTORNO


Comune:	Inveruno	Colorazione:	<u>Chiaro</u>
Orientamento:	<u>s</u>	Mese massima insolazione:	luglio
Temp. media mese massima insolaz.:	24,3 °C	Temperatura massima estiva:	30,7 °C
Escursione giorno più caldo dell'anno:	11,5 °C	Irradian. mensile massima piano orizz.:	275,46 W/m ²


INERZIA TERMICA

Tempo sfasamento dell'onda termica:	15h 39'	Fattore di attenuazione:	0,0401
Capacità termica interna C1:	$58,0 \text{ kJ/(m}^2/\text{K})$	Capacità termica esterna C2:	108,9 kJ/(m ² /K)
Ammettenza interna oraria:	12,7 W/(m ² /K)	Ammettenza interna in modulo:	4,2 W/(m ² /K)
Ammettenza esterna oraria:	14,5 W/(m ² /K)	Ammettenza esterna in modulo:	7,9 W/(m ² /K)
Trasmittanza termica periodica Y:	0,008 W/(m ² K)	Classificazione struttura da normativa:	
Trasmitt. termica periodica limite Ylim:	0,100 W/(m ² K)		

ESITO VERIFICA DI INERZIA: OK

	Temperatura esterna nel giorno più caldo Te	Irradiazione solare nel giorno più caldo dell'anno le	Temp. superficiale esterna nel giorno più caldo Te,sup	Temperatura interna nel giorno più caldo Ti
Ora	°C	W/m²	°C	<u>°C</u>
0:00	21,26	0,00	21,26	25,93
1:00	20,68	0,00	20,68	26,06
2:00	20,11	0,00	20,11	26,18
3:00	19,65	0,00	19,65	26,30
4:00	19,30	0,00	19,30	26,39
5:00	19,19	10,00	19,31	26,43
6:00	19,42	49,00	20,01	26,43
7:00	19,99	85,75	21,02	26,39
8:00	21,03	173,00	23,10	26,30
9:00	22,52	315,75	26,31	26,22
10:00	24,25	432,75	29,44	26,16
11:00	26,20	508,25	32,30	26,08
12:00	28,04	534,25	34,45	26,02
13:00	29,42	508,25	35,52	25,97
14:00	30,34	432,75	35,54	25,92
15:00	30,69	315,75	34,48	25,88
16:00	30,34	173,00	32,42	25,86
17:00	29,54	66,50	30,34	25,83
18:00	28,27	49,50	28,87	25,81
19:00	26,78	10,00	26,90	25,79
20:00	25,28	0,00	25,28	25,78
21:00	24,02	0,00	24,02	25,78
22:00	22,87	0,00	22,87	25,80
23:00	21,95	0,00	21,95	25,85

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: Inveruno_CV03a

Note:

Tipologia:	<u>Parete</u>	Disposizione:	<u>Verticale</u>
Verso:	<u>Esterno</u>	Spessore:	<u>556,0</u> mm
Trasmittanza U:	0,153 W/(m ² K)	Resistenza R:	6,556 (m ² K)/W
Massa superf.:	845 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore	Conduttività	Resistenza	Densità	Capacità term.	Fattore	Fattore
	Strato	s	λ	R	ρ	С	μа	μи
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-	-
Α	Cartongesso in lastre	25,0	0,210	0,119	900	1,30	8,7	8,7
В	Polietilene (PE)	1,0	0,350	0,003	950	2,30	54.054 ,1	54.054 ,1
С	Lana di roccia - 40kg/mc	40,0	0,035	1,143	40	1,03	1,0	1,0
D	Calcestruzzo armato (getto)	250,0	1,910	0,131	2.400	1,00	0,0	999.99 9,0
Е	0_STiferite SK	120,0	0,025	4,800	35	1,40	56,0	56,0
F	Mattone semipieno 120 x 250 foratura 21% (giunti malta 12 mm)	120,0	0,632	0,190	1.800	1,00	10,0	5,0
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-	-	-	_
	TOTALE	556,0		6,556				

Conduttanza unitaria superficiale interna: 7,690 W/(m²K)

Resistenza unitaria superficiale interna: 0,130 (m²K)/W

Conduttanza unitaria superficiale esterna: 25,000 W/(m²K)

Resistenza unitaria superficiale esterna: 0,040 (m²K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	<u>Inveruno</u>	Zona climatica:	<u>E</u>
Trasmittanza della struttura U:	0,153 W/(m ² K)	Trasmittanza limite Ulim:	0,260 W/(m ² K)

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

ESITO VERIFICA DI TRASMITTANZA: -

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	<u>Inveruno</u>	Tipo di calcolo:	Classi di concentrazione
Verso:	<u>Esterno</u>	Coeff. di correzione btr,x:	
Classe di aditiais	Edifici con indice di affollamento non	Values interes V	3
Classe di edificio:	noto	Volume interno V:	- m ³
Produz. nota di vapore G:	- kg/h		

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	-	-0,1	84,9	0,5
febbraio	20,0	-	3,4	74,0	0,5
marzo	20,0	-	7,0	63,4	0,5
aprile	20,0	-	10,3	66,4	0,5
maggio	20,0	-	16,2	72,9	0,5
giugno	20,0	-	20,3	70,5	0,5
luglio	20,0	-	21,0	64,3	0,5
agosto	20,0	-	20,9	66,1	0,5
settembre	20,0	-	17,0	71,8	0,5
ottobre	20,0	-	11,4	90,7	0,5
novembre	20,0	-	5,9	94,7	0,5
dicembre	20,0	-	1,3	85,6	0,5

CONDIZIONE	Temperatura interna θi	Pressione parziale interna pi	Temperatura esterna θe	Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	-0,10	514,20
ESTIVA	20,00	1.615,60	21,00	1.597,60

X	La struttura non è soggetta a fenomeni di condensa interstiziale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 571,025 Pa.
	La struttura è soggetta a fenomeni di condensa.
	La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).
×	La struttura non è soggetta a fenomeni di condensa superficiale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 571,025 Pa.

VERIFICA FORMAZIONE MUFFE SUPERFICIALI

CONDIZIONI AL CONTORNO INTERNE ED ESTERNE

	Temperatura esterna Te	Pressione esterna Pe	Variazione di pressione ΔP	Pressione interna Pi	Temperatura interna Ti	Umidità relativa interna φi
Mese	°C	Pa	Pa	Pa	°C	%
ottobre	11,4	1221,38	405,3	1626,68	20	91
novembre	5,9	878,74	600,55	1479,29	20	95
dicembre	1,3	574,43	763,85	1338,28	20	86
gennaio	-0,1	514,17	810	1324,17	20	85
febbraio	3,4	576,19	689,3	1265,49	20	74
marzo	7,0	634,73	561,5	1196,23	20	63
aprile	10,3	831,79	444,35	1276,14	20	66

CALCOLO DEL FATTORE DI RISCHIO

La verifica della formazione di muffa è eseguita in maniera conforme a quanto riportato nella norma UNI EN ISO 13788

	Temperatura superficiale critica Tsi-critica	Fattore di rischio ammissibile frsi- amm
Mese	°C	-

ottobre	17,77	0,7408
novembre	16,27	0,7356
dicembre	14,71	0,7171
gennaio	14,55	0,7287
febbraio	13,85	0,6293
marzo	12,98	0,4602
aprile	13,98	0,3789

Riepilogo dei risultati:

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione

Fattore di resistenza superficiale fRsi: 0,7408 (mese di Ottobre)

Fattore di resistenza superficiale ammissibile massimo fRsiAmm: 0,9802

ESITO VERIFICA DI MUFFA: OK

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.324,2	1.265,5	1.196,2	1.276,1	1.577,5	1.766,8	1.662,1	1.700,1	1.596,5	1.626,7	1.479,3	1.338,3
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.321,3	1.263,1	1.194,3	1.274,6	1.576,6	1.766,5	1.661,9	1.699,9	1.595,7	1.625,3	1.477,2	1.335,6
	2.228,7	2.247,3	2.266,4	2.284,2	2.316,1	2.338,6	2.342,5	2.341,9	2.320,5	2.290,1	2.260,6	2.236,1
A-B	617,8	664,4	706,6	888,6	1.372,6	1.688,9	1.605,8	1.640,8	1.416,4	1.273,2	955,6	672,1
	2.227,5	2.246,2	2.265,6	2.283,6	2.315,9	2.338,6	2.342,5	2.342,0	2.320,3	2.289,6	2.259,7	2.235,0
B-C	617,3	663,9	706,2	888,3	1.372,5	1.688,8	1.605,8	1.640,7	1.416,2	1.273,0	955,2	671,6
	1.785,4	1.872,3	1.965,6	2.054,6	2.222,5	2.346,2	2.367,9	2.364,8	2.246,2	2.085,0	1.936,7	1.819,8
C-D	617,3	663,9	706,2	888,3	1.372,5	1.688,8	1.605,8	1.640,7	1.416,2	1.273,0	955,2	671,6
	1.740,1	1.833,2	1.933,5	2.029,7	2.212,0	2.347,1	2.370,8	2.367,4	2.237,8	2.062,6	1.902,4	1.776,8
D-E	529,8	589,5	645,6	840,4	1.347,1	1.679,2	1.598,8	1.633,4	1.393,9	1.229,2	890,3	589,2
	637,9	811,8	1.033,1	1.281,0	1.856,3	2.379,2	2.480,2	2.465,6	1.949,6	1.374,5	960,5	703,1
E-F	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	611,5	784,8	1.006,8	1.257,2	1.843,3	2.380,4	2.484,7	2.469,5	1.938,9	1.352,0	933,7	676,3
F-Add	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	605,5	779,2	1.001,3	1.252,2	1.840,6	2.380,7	2.485,6	2.470,4	1.936,6	1.347,3	928,2	670,7

TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	19,6	19,7	19,7	19,8	19,9	20,0	20,0	20,0	19,9	19,8	19,7	19,6
A-B	19,2	19,4	19,5	19,6	19,9	20,0	20,0	20,0	19,9	19,7	19,5	19,3
B-C	19,2	19,4	19,5	19,6	19,9	20,0	20,0	20,0	19,9	19,7	19,5	19,3
C-D	15,7	16,5	17,2	17,9	19,2	20,1	20,2	20,2	19,4	18,2	17,0	16,0
D-E	15,3	16,1	17,0	17,7	19,1	20,1	20,2	20,2	19,3	18,0	16,7	15,6
E-F	0,6	4,0	7,5	10,6	16,3	20,3	21,0	20,9	17,1	11,7	6,4	2,0
F-Add	0,0	3,5	7,1	10,4	16,2	20,3	21,0	20,9	17,0	11,5	6,0	1,4
Add-Esterno	-0,1	3,4	7,0	10,3	16,2	20,3	21,0	20,9	17,0	11,4	5,9	1,3

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. E/F												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]												

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente Gc: 0,0000 (mese di -) kg/m^2 nell'interfaccia -

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia $G_{c,max}$: 0,5000 kg/m 2

Quantità di vapore residuo Ma: 0,0000 (mese di -) kg/m² nell'interfaccia -

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA Fl^{2,500} p2.500 p2.500 20_F 2,000 12,000 2,000 1.500 1500 1,500 1,000 1,000 Febbraio Marzo Gennaio арі le т*а*доја giugna 2.500 2,000 1,500 H1.500 H1.000 1,000 El₅₀₀ E]500 Aprile Maggio Giugno settemble lugio agasto 2.500 2000 1.500 1,000 E|500 Luglio Agosto Settembre dæmbe attable navem Die 2.000 2,000 5 1.500 1500 1500 H1.000 H1.000 1,000 Dicembre Ottobre Novembre LEGENDA Temperatura [°C] Pressione del vapore [Pa] Press. di saturazione [Pa]

VERIFICA DI MASSA E INERZIA TERMICA

Il comportamento termico dinamico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13786.

Verifica di massa:

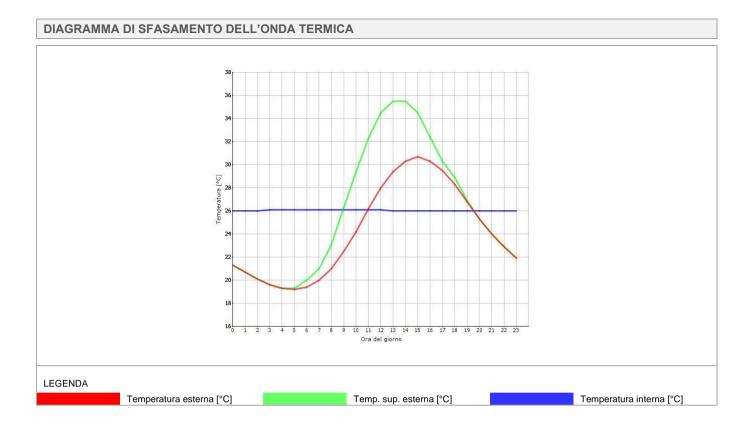
Massa della struttura per metro quadrato di superficie: 845 kg/m²

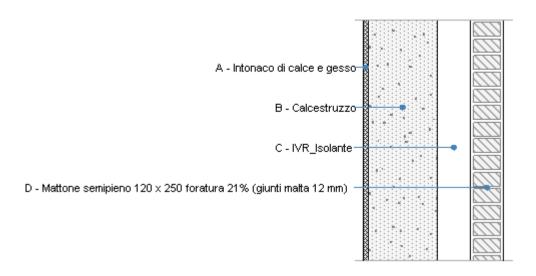
Valore minimo di massa superficiale: 230 kg/m 2

ESITO VERIFICA DI MASSA: OK

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

CONDIZIONI AL CONTORNO


Comune:	Inveruno	Colorazione:	<u>Chiaro</u>
Orientamento:	<u>s</u>	Mese massima insolazione:	luglio
Temp. media mese massima insolaz.:	24,3 °C	Temperatura massima estiva:	30,7 °C
Escursione giorno più caldo dell'anno:	11,5 °C	Irradian. mensile massima piano orizz.:	275,46 W/m ²


INERZIA TERMICA

Tempo sfasamento dell'onda termica:	17h 22'	Fattore di attenuazione:	0,0082
Capacità termica interna C1:	27,4 kJ/(m ² /K)	Capacità termica esterna C2:	108,9 kJ/(m ² /K)
Ammettenza interna oraria:	15,4 W/(m ² /K)	Ammettenza interna in modulo:	2,0 W/(m ² /K)
Ammettenza esterna oraria:	14,5 W/(m ² /K)	Ammettenza esterna in modulo:	7,9 W/(m ² /K)
Trasmittanza termica periodica Y:	0,001 W/(m ² K)	Classificazione struttura da normativa:	
Trasmitt. termica periodica limite Ylim:	0,100 W/(m ² K)		

ESITO VERIFICA DI INERZIA: OK

	Temperatura esterna nel giorno più caldo Te	Irradiazione solare nel giorno più caldo dell'anno le	Temp. superficiale esterna nel giorno più caldo Te,sup	Temperatura interna nel giorno più caldo Ti
Ora	°C	W/m²	°C	°C
0:00	21,26	0,00	21,26	26,01
1:00	20,68	0,00	20,68	26,02
2:00	20,11	0,00	20,11	26,05
3:00	19,65	0,00	19,65	26,08
4:00	19,30	0,00	19,30	26,10
5:00	19,19	10,00	19,31	26,12
6:00	19,42	49,00	20,01	26,13
7:00	19,99	85,75	21,02	26,13
8:00	21,03	173,00	23,10	26,12
9:00	22,52	315,75	26,31	26,10
10:00	24,25	432,75	29,44	26,08
11:00	26,20	508,25	32,30	26,07
12:00	28,04	534,25	34,45	26,05
13:00	29,42	508,25	35,52	26,04
14:00	30,34	432,75	35,54	26,03
15:00	30,69	315,75	34,48	26,02
16:00	30,34	173,00	32,42	26,01
17:00	29,54	66,50	30,34	26,01
18:00	28,27	49,50	28,87	26,00
19:00	26,78	10,00	26,90	26,00
20:00	25,28	0,00	25,28	25,99
21:00	24,02	0,00	24,02	25,99
22:00	22,87	0,00	22,87	25,99
23:00	21,95	0,00	21,95	26,00

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: Inveruno_CV03c

Note:

Tipologia:	<u>Parete</u>	Disposizione:	<u>Verticale</u>
Verso:	<u>Esterno</u>	Spessore:	<u>505,0</u> mm
Trasmittanza U:	0,184 W/(m ² K)	Resistenza R:	5,425 (m ² K)/W
Massa superf.:	520 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore	Conduttività	Resistenza	Densità	Capacità term.	Fattore	Fattore
	Suuto	s	λ	R	ρ	С	μа	μи
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-	-
Α	Intonaco di calce e gesso	15,0	0,700	0,021	1.400	0,84	11,1	11,1
В	Calcestruzzo	250,0	0,330	0,758	1.200	1,00	3,3	3,3
С	IVR_Isolante	120,0	0,028	4,286	35	1,40	56,0	56,0
D	Mattone semipieno 120 x 250 foratura 21% (giunti malta 12 mm)	120,0	0,632	0,190	1.800	1,00	10,0	5,0
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-	-	-	_
	TOTALE	505,0		5,425				

Conduttanza unitaria superficiale interna: 7,690 W/(m²K)

Resistenza unitaria superficiale interna: 0,130 (m²K)/W

Conduttanza unitaria superficiale esterna: 25,000 W/(m²K)

Resistenza unitaria superficiale esterna: 0,040 (m²K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	<u>Inveruno</u>	Zona climatica:	<u>E</u>
Trasmittanza della struttura U:	0,184 W/(m ² K)	Trasmittanza limite Ulim:	0,260 W/(m ² K)

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

ESITO VERIFICA DI TRASMITTANZA: -

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	Inveruno	Tipo di calcolo:	Classi di concentrazione
Verso:	<u>Esterno</u>	Coeff. di correzione btr,x:	
Classe di edificio:	Edifici con indice di affollamento non	Volume interno V:	- m3
Classe di edilicio.	noto	volume interno v.	- 1110
Produz. nota di vapore G:	- kg/h		

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	-	-0,1	84,9	0,5
febbraio	20,0	-	3,4	74,0	0,5
marzo	20,0	-	7,0	63,4	0,5
aprile	20,0	-	10,3	66,4	0,5
maggio	20,0	-	16,2	72,9	0,5
giugno	20,0	-	20,3	70,5	0,5
luglio	20,0	-	21,0	64,3	0,5
agosto	20,0	-	20,9	66,1	0,5
settembre	20,0	-	17,0	71,8	0,5
ottobre	20,0	-	11,4	90,7	0,5
novembre	20,0	-	5,9	94,7	0,5
dicembre	20,0	-	1,3	85,6	0,5

CONDIZIONE	Temperatura interna θi	Temperatura interna θi Pressione parziale interna pi		Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	-0,10	514,20
ESTIVA	20,00	1.615,60	21,00	1.597,60

Х	La struttura non è soggetta a fenomeni di condensa interstiziale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 571,205 Pa.
	La struttura è soggetta a fenomeni di condensa.
	La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).
X	La struttura non è soggetta a fenomeni di condensa superficiale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 571,205 Pa.

VERIFICA FORMAZIONE MUFFE SUPERFICIALI

CONDIZIONI AL CONTORNO INTERNE ED ESTERNE

Mese	Temperatura esterna Te °C	Pressione esterna Pe Pa	Variazione di pressione ΔP Pa	Pressione interna Pi Pa	Temperatura interna Ti °C	Umidità relativa interna φi %
ottobre	11,4	1221,38	405,3	1626,68	20	91
novembre	5,9	878,74	600,55	1479,29	20	95
dicembre	1,3	574,43	763,85	1338,28	20	86
gennaio	-0,1	514,17	810	1324,17	20	85
febbraio	3,4	576,19	689,3	1265,49	20	74
marzo	7,0	634,73	561,5	1196,23	20	63
aprile	10,3	831,79	444,35	1276,14	20	66

CALCOLO DEL FATTORE DI RISCHIO

La verifica della formazione di muffa è eseguita in maniera conforme a quanto riportato nella norma UNI EN ISO 13788

	Temperatura superficiale critica T _S i-critica	Fattore di rischio ammissibile frsi- amm
Mese	°C	-

ottobre	17,77	0,7408
novembre	16,27	0,7356
dicembre	14,71	0,7171
gennaio	14,55	0,7287
febbraio	13,85	0,6293
marzo	12,98	0,4602
aprile	13,98	0,3789

Riepilogo dei risultati:

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione

Fattore di resistenza superficiale fRsi: 0,7408 (mese di Ottobre)

Fattore di resistenza superficiale ammissibile massimo fRsiAmm: 0,9760

ESITO VERIFICA DI MUFFA: OK

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.324,2	1.265,5	1.196,2	1.276,1	1.577,5	1.766,8	1.662,1	1.700,1	1.596,5	1.626,7	1.479,3	1.338,3
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.309,0	1.252,6	1.185,7	1.267,8	1.573,1	1.765,1	1.660,9	1.698,8	1.592,6	1.619,1	1.468,1	1.324,0
	2.257,0	2.270,7	2.285,0	2.298,1	2.321,6	2.338,2	2.341,0	2.340,6	2.324,9	2.302,4	2.280,6	2.262,5
A-B	1.233,4	1.188,3	1.133,3	1.226,4	1.551,2	1.756,8	1.654,9	1.692,5	1.573,3	1.581,3	1.412,0	1.252,7
	1.891,9	1.963,6	2.039,8	2.111,9	2.246,4	2.344,2	2.361,3	2.358,9	2.265,2	2.136,4	2.016,2	1.920,3
В-С	623,2	668,9	710,3	891,6	1.374,2	1.689,5	1.606,3	1.641,2	1.417,7	1.275,9	959,5	677,2
	644,7	818,8	1.039,9	1.287,0	1.859,6	2.378,8	2.479,1	2.464,6	1.952,3	1.380,2	967,3	710,0
C-D	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	612,6	785,9	1.007,9	1.258,2	1.843,9	2.380,4	2.484,5	2.469,3	1.939,4	1.353,0	934,9	677,4
D-Add	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	605,5	779,2	1.001,3	1.252,2	1.840,6	2.380,7	2.485,6	2.470,4	1.936,6	1.347,3	928,2	670,7

TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	19,5	19,6	19,7	19,8	19,9	20,0	20,0	20,0	19,9	19,8	19,7	19,6
A-B	19,4	19,5	19,6	19,7	19,9	20,0	20,0	20,0	19,9	19,8	19,6	19,5
B-C	16,6	17,2	17,8	18,4	19,4	20,1	20,2	20,2	19,5	18,6	17,6	16,9
C-D	0,8	4,1	7,6	10,7	16,4	20,3	21,0	20,9	17,1	11,8	6,5	2,1
D-Add	0,0	3,5	7,1	10,4	16,2	20,3	21,0	20,9	17,0	11,5	6,0	1,4
Add-Esterno	-0,1	3,4	7,0	10,3	16,2	20,3	21,0	20,9	17,0	11,4	5,9	1,3

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,000
Ma [Kg/m²]	0,0000	0,0000	0.0000	0.0000	0.0000	0.0000	0,0000	0.0000	0.0000	0.0000	0.0000	0.000

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente Gc: 0,0000 (mese di -) kg/m 2 nell'interfaccia -

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia $G_{c,max}$: 0,5000 kg/m 2

Quantità di vapore residuo Ma: 0,0000 (mese di -) kg/m² nell'interfaccia -

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA Fl^{2,500} p2.500 p2.500 20_F 2,000 2,000 2,000 5 1.500 1.500 1.500 1,000 1,000 Febbraio Gennaio Marzo арі le т*а*доја giugna 2.500 2,000 5 1,500 H1.500 H1.000 1,000 El₅₀₀ E]500 Aprile Maggio Giugno lugia settemble agasto 2.500 2000 H1500 1,000 E|₅₀₀ Luglio Agosto Settembre dæmbe attable navem Die 2,000 2,000 5 1.500 1500 1500 H1.000 H1.000 1,000 Ottobre Novembre Dicembre LEGENDA Temperatura [°C] Pressione del vapore [Pa] Press. di saturazione [Pa]

VERIFICA DI MASSA E INERZIA TERMICA

Il comportamento termico dinamico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13786.

Verifica di massa:

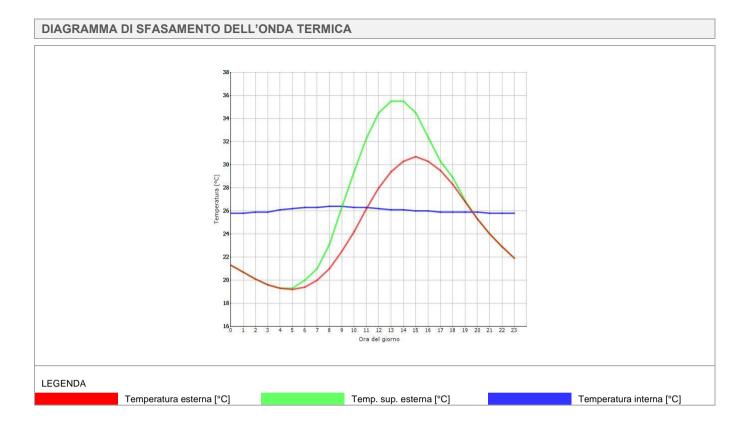
Massa della struttura per metro quadrato di superficie: 520 kg/m²

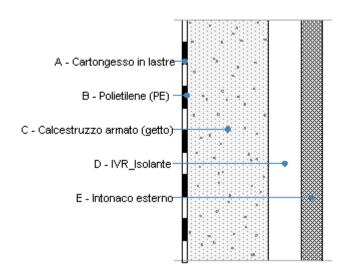
Valore minimo di massa superficiale: 230 kg/m 2

ESITO VERIFICA DI MASSA: OK

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

CONDIZIONI AL CONTORNO


Comune:	Inveruno	Colorazione:	<u>Chiaro</u>
Orientamento:	<u>s</u>	Mese massima insolazione:	luglio
Temp. media mese massima insolaz.:	24,3 °C	Temperatura massima estiva:	30,7 °C
Escursione giorno più caldo dell'anno:	11,5 °C	Irradian. mensile massima piano orizz.:	275,46 W/m²


INERZIA TERMICA

Tempo sfasamento dell'onda termica:	19h 11'	Fattore di attenuazione:	0,0359
Capacità termica interna C1:	49,9 kJ/(m ² /K)	Capacità termica esterna C2:	108,9 kJ/(m ² /K)
Ammettenza interna oraria:	13,9 W/(m ² /K)	Ammettenza interna in modulo:	3,6 W/(m ² /K)
Ammettenza esterna oraria:	14,5 W/(m ² /K)	Ammettenza esterna in modulo:	7,9 W/(m ² /K)
Trasmittanza termica periodica Y:	0,007 W/(m ² K)	Classificazione struttura da normativa:	
Trasmitt. termica periodica limite Ylim:	0,100 W/(m ² K)		

ESITO VERIFICA DI INERZIA: OK

	Temperatura esterna nel giorno più caldo Te	Irradiazione solare nel giorno più caldo dell'anno le	Temp. superficiale esterna nel giorno più caldo Te,sup	Temperatura interna nel giorno più caldo Ti
Ora	°C	W/m²	°C	°C
0:00	21,26	0,00	21,26	25,81
1:00	20,68	0,00	20,68	25,83
2:00	20,11	0,00	20,11	25,87
3:00	19,65	0,00	19,65	25,94
4:00	19,30	0,00	19,30	26,06
5:00	19,19	10,00	19,31	26,17
6:00	19,42	49,00	20,01	26,27
7:00	19,99	85,75	21,02	26,35
8:00	21,03	173,00	23,10	26,39
9:00	22,52	315,75	26,31	26,39
10:00	24,25	432,75	29,44	26,35
11:00	26,20	508,25	32,30	26,28
12:00	28,04	534,25	34,45	26,20
13:00	29,42	508,25	35,52	26,15
14:00	30,34	432,75	35,54	26,08
15:00	30,69	315,75	34,48	26,02
16:00	30,34	173,00	32,42	25,97
17:00	29,54	66,50	30,34	25,93
18:00	28,27	49,50	28,87	25,90
19:00	26,78	10,00	26,90	25,88
20:00	25,28	0,00	25,28	25,86
21:00	24,02	0,00	24,02	25,83
22:00	22,87	0,00	22,87	25,82
23:00	21,95	0,00	21,95	25,81

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: Inveruno_CV05a

Note:

Tipologia:	<u>Parete</u>	Disposizione:	<u>Verticale</u>
Verso:	<u>Esterno</u>	Spessore:	<u>516,0</u> mm
Trasmittanza U:	0,209 W/(m ² K)	Resistenza R:	4,776 (m ² K)/W
Massa superf.:	739 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità term. C	Fattore μa	Fattore μu
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-	-
Α	Cartongesso in lastre	15,0	0,210	0,071	900	1,30	8,7	8,7
В	Polietilene (PE)	1,0	0,350	0,003	950	2,30	54.054 ,1	54.054 ,1
С	Calcestruzzo armato (getto)	300,0	1,910	0,157	2.400	1,00	0,0	999.99 9,0
D	IVR_Isolante	120,0	0,028	4,286	35	1,40	56,0	56,0
Е	Intonaco esterno	80,0	0,900	0,089	1.800	1,00	16,7	16,7
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-	-	-	-
	TOTALE	516,0		4,776				

Conduttanza unitaria superficiale interna: 7,690 W/(m²K)

Resistenza unitaria superficiale interna: 0,130 (m²K)/W

Conduttanza unitaria superficiale esterna: 25,000 W/(m²K)

Resistenza unitaria superficiale esterna: 0,040 (m²K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	<u>Inveruno</u>	Zona climatica:	<u>E</u>
Trasmittanza della struttura U:	0,209 W/(m ² K)	Trasmittanza limite Ulim:	0,260 W/(m ² K)

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

ESITO VERIFICA DI TRASMITTANZA: -

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	<u>Inveruno</u>	Tipo di calcolo:	Classi di concentrazione
Verso:	<u>Esterno</u>	Coeff. di correzione btr,x:	
Classe di adificio	Edifici con indice di affollamento non	Valuma interna V	3
Classe di edificio:	noto	Volume interno V:	- m ³
Produz. nota di vapore G:	- kg/h		

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	-	-0,1	84,9	0,5
febbraio	20,0	-	3,4	74,0	0,5
marzo	20,0	-	7,0	63,4	0,5
aprile	20,0	-	10,3	66,4	0,5
maggio	20,0	-	16,2	72,9	0,5
giugno	20,0	-	20,3	70,5	0,5
luglio	20,0	-	21,0	64,3	0,5
agosto	20,0	-	20,9	66,1	0,5
settembre	20,0	-	17,0	71,8	0,5
ottobre	20,0	-	11,4	90,7	0,5
novembre	20,0	-	5,9	94,7	0,5
dicembre	20,0	-	1,3	85,6	0,5

CONDIZIONE	Temperatura interna θi	Pressione parziale interna pi	Temperatura esterna θe	Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	-0,10	514,20
ESTIVA	20,00	1.615,60	21,00	1.597,60

X	La struttura non è soggetta a fenomeni di condensa interstiziale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 571,346 Pa.
	La struttura è soggetta a fenomeni di condensa.
	La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).
×	La struttura non è soggetta a fenomeni di condensa superficiale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 571,346 Pa.

VERIFICA FORMAZIONE MUFFE SUPERFICIALI

CONDIZIONI AL CONTORNO INTERNE ED ESTERNE

Mass	Temperatura esterna Te	Pressione esterna Pe	Variazione di pressione ΔP	Pressione interna Pi	Temperatura interna Ti	Umidità relativa interna φi
Mese	°C	Pa	Pa	Pa	°C	%
ottobre	11,4	1221,38	405,3	1626,68	20	91
novembre	5,9	878,74	600,55	1479,29	20	95
dicembre	1,3	574,43	763,85	1338,28	20	86
gennaio	-0,1	514,17	810	1324,17	20	85
febbraio	3,4	576,19	689,3	1265,49	20	74
marzo	7,0	634,73	561,5	1196,23	20	63
aprile	10,3	831,79	444,35	1276,14	20	66

CALCOLO DEL FATTORE DI RISCHIO

La verifica della formazione di muffa è eseguita in maniera conforme a quanto riportato nella norma UNI EN ISO 13788

	Temperatura superficiale critica Tsi-critica	Fattore di rischio ammissibile frsi- amm
Mese	°C	-

ottobre	17,77	0,7408
novembre	16,27	0,7356
dicembre	14,71	0,7171
gennaio	14,55	0,7287
febbraio	13,85	0,6293
marzo	12,98	0,4602
aprile	13,98	0,3789

Riepilogo dei risultati:

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione

Fattore di resistenza superficiale fRsi: 0,7408 (mese di Ottobre)

Fattore di resistenza superficiale ammissibile massimo fRsiAmm: 0,9728

ESITO VERIFICA DI MUFFA: OK

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.324,2	1.265,5	1.196,2	1.276,1	1.577,5	1.766,8	1.662,1	1.700,1	1.596,5	1.626,7	1.479,3	1.338,3
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.322,5	1.264,0	1.195,1	1.275,2	1.577,0	1.766,6	1.662,0	1.700,0	1.596,0	1.625,8	1.478,0	1.336,7
	2.217,1	2.237,6	2.258,8	2.278,4	2.313,9	2.338,8	2.343,1	2.342,4	2.318,7	2.285,0	2.252,3	2.225,2
A-B	619,0	665,4	707,4	889,3	1.373,0	1.689,0	1.605,9	1.640,9	1.416,7	1.273,8	956,5	673,3
	2.215,4	2.236,2	2.257,7	2.277,6	2.313,5	2.338,8	2.343,1	2.342,5	2.318,4	2.284,3	2.251,1	2.223,7
В-С	619,0	665,4	707,4	889,3	1.373,0	1.689,0	1.605,9	1.640,9	1.416,7	1.273,8	956,5	673,3
	2.125,8	2.161,3	2.198,4	2.232,9	2.295,7	2.340,2	2.347,9	2.346,8	2.304,3	2.244,5	2.187,0	2.139,9
C-D	531,5	591,0	646,8	841,3	1.347,6	1.679,4	1.599,0	1.633,5	1.394,4	1.230,1	891,6	590,8
	630,4	804,2	1.025,7	1.274,3	1.852,7	2.379,5	2.481,5	2.466,7	1.946,6	1.368,2	952,9	695,5
D-E	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	613,5	786,9	1.008,8	1.259,0	1.844,4	2.380,3	2.484,3	2.469,2	1.939,7	1.353,7	935,8	678,3
E-Add	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	605,5	779,2	1.001,3	1.252,2	1.840,6	2.380,7	2.485,6	2.470,4	1.936,6	1.347,3	928,2	670,7

TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	19,5	19,5	19,6	19,7	19,9	20,0	20,0	20,0	19,9	19,8	19,6	19,5
A-B	19,2	19,3	19,5	19,6	19,8	20,0	20,0	20,0	19,9	19,6	19,4	19,2
B-C	19,1	19,3	19,4	19,6	19,8	20,0	20,0	20,0	19,9	19,6	19,4	19,2
C-D	18,5	18,7	19,0	19,3	19,7	20,0	20,1	20,1	19,8	19,3	18,9	18,6
D-E	0,4	3,8	7,4	10,6	16,3	20,3	21,0	20,9	17,1	11,6	6,3	1,8
E-Add	0,1	3,5	7,1	10,4	16,2	20,3	21,0	20,9	17,0	11,5	6,0	1,5
Add-Esterno	-0,1	3,4	7,0	10,3	16,2	20,3	21,0	20,9	17,0	11,4	5,9	1,3

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. E/F												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]												

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente Gc: 0,0000 (mese di -) kg/m 2 nell'interfaccia -

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia Gc,max: 0,5000 kg/m²

Quantità di vapore residuo Ma: 0,0000 (mese di -) kg/m² nell'interfaccia -

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA p2.500 p2.500 Fl^{2,500} 20_F 2,000 2,000 2,000 101 1,500 1500 1.500 5 0 1,000 1,000 Febbraio Marzo Gennaio арі le т*а*доја giugna 2.500 2,000 1,500 H1.500 H1.000 H1.000 El₅₀₀ E]500 Aprile Maggio Giugno settemble lugia agasto 2.500 2000 H1500 1,000 E|500 Luglio Agosto Settembre dæmbe attable navem Die FI^{2,500} 2,000 2,000 101 H1500 1.500 1500 H1.000 H1.000 1,000 Ottobre Novembre Dicembre LEGENDA Temperatura [°C] Pressione del vapore [Pa] Press. di saturazione [Pa]

VERIFICA DI MASSA E INERZIA TERMICA

Il comportamento termico dinamico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13786.

Verifica di massa:

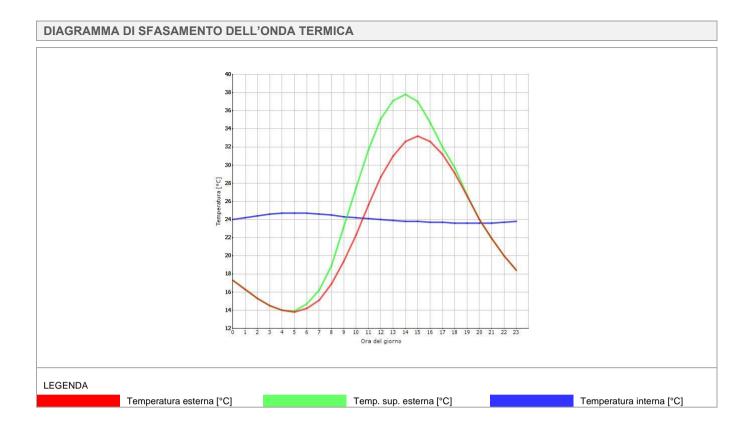
Massa della struttura per metro quadrato di superficie: 739 kg/m²

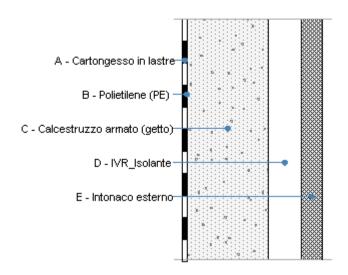
Valore minimo di massa superficiale: 230 kg/m 2

ESITO VERIFICA DI MASSA: OK

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

CONDIZIONI AL CONTORNO


Comune:	Inveruno	Colorazione:	<u>Chiaro</u>
Orientamento:	<u>s</u>	Mese massima insolazione:	luglio
Temp. media mese massima insolaz.:	24,3 °C	Temperatura massima estiva:	30,7 °C
Escursione giorno più caldo dell'anno:	11,5 °C	Irradian. mensile massima piano orizz.:	275,46 W/m ²


INERZIA TERMICA

Tempo sfasamento dell'onda termica:	14h 30'	Fattore di attenuazione:	0,0470
Capacità termica interna C1:	57,6 kJ/(m ² /K)	Capacità termica esterna C2:	114,1 kJ/(m ² /K)
Ammettenza interna oraria:	12,7 W/(m ² /K)	Ammettenza interna in modulo:	4,2 W/(m ² /K)
Ammettenza esterna oraria:	15,6 W/(m ² /K)	Ammettenza esterna in modulo:	8,3 W/(m ² /K)
Trasmittanza termica periodica Y:	0,010 W/(m ² K)	Classificazione struttura da normativa:	
Trasmitt. termica periodica limite Ylim:	0,100 W/(m ² K)		

ESITO VERIFICA DI INERZIA: OK

	Temperatura esterna nel giorno più caldo Te	Irradiazione solare nel giorno più caldo dell'anno le	Temp. superficiale esterna nel giorno più caldo Te,sup	Temperatura interna nel giorno più caldo Ti
Ora	°C	W/m²	°C	°C
0:00	17,26	0,00	17,26	24,04
1:00	16,29	0,00	16,29	24,24
2:00	15,32	0,00	15,32	24,44
3:00	14,54	0,00	14,54	24,60
4:00	13,96	0,00	13,96	24,69
5:00	13,77	10,00	13,89	24,72
6:00	14,16	49,00	14,74	24,68
7:00	15,13	85,75	16,15	24,58
8:00	16,87	173,00	18,95	24,45
9:00	19,39	315,75	23,18	24,34
10:00	22,30	432,75	27,50	24,20
11:00	25,60	508,25	31,70	24,08
12:00	28,71	534,25	35,12	23,98
13:00	31,03	508,25	37,13	23,89
14:00	32,59	432,75	37,78	23,81
15:00	33,17	315,75	36,96	23,76
16:00	32,59	173,00	34,66	23,71
17:00	31,23	66,50	32,03	23,67
18:00	29,09	49,50	29,69	23,63
19:00	26,57	10,00	26,69	23,60
20:00	24,05	0,00	24,05	23,60
21:00	21,92	0,00	21,92	23,64
22:00	19,98	0,00	19,98	23,71
23:00	18,42	0,00	18,42	23,84

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: Inveruno_CV05a NR

Note:

Tipologia:	<u>Parete</u>	Disposizione:	<u>Verticale</u>
Verso:	Zona non riscaldata	Spessore:	<u>516,0</u> mm
Trasmittanza U:	0,206 W/(m ² K)	Resistenza R:	4,866 (m ² K)/W
Massa superf.:	739 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità term.	Fattore μa	Fattore μυ
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-	-
Α	Cartongesso in lastre	15,0	0,210	0,071	900	1,30	8,7	8,7
В	Polietilene (PE)	1,0	0,350	0,003	950	2,30	54.054 ,1	54.054 ,1
С	Calcestruzzo armato (getto)	300,0	1,910	0,157	2.400	1,00	0,0	999.99 9,0
D	IVR_Isolante	120,0	0,028	4,286	35	1,40	56,0	56,0
Е	Intonaco esterno	80,0	0,900	0,089	1.800	1,00	16,7	16,7
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	_	_	-
	TOTALE	516,0		4,866				

Conduttanza unitaria superficiale interna: 7,690 W/(m²K)

Resistenza unitaria superficiale interna: 0,130 (m²K)/W

Conduttanza unitaria superficiale esterna: 7,690 W/(m²K)

Resistenza unitaria superficiale esterna: 0,130 (m²K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	<u>Inveruno</u>	Zona climatica:	<u>E</u>
Trasmittanza della struttura U:	0,206 W/(m ² K)	Trasmittanza limite Ulim:	0,260 W/(m ² K)

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

ESITO VERIFICA DI TRASMITTANZA: -

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	Inveruno	Tipo di calcolo:	Classi di concentrazione
Verso:	Zona non riscaldata	Coeff. di correzione btr,x:	0,0
Classe di editicio	Edifici con indice di affollamento non	Values interes V	- m ³
Classe di edificio:	noto	Volume interno V:	- Mo
Produz. nota di vapore G:	- kg/h		

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	-	20,0	84,9	0,5
febbraio	20,0	-	20,0	74,0	0,5
marzo	20,0	-	20,0	63,4	0,5
aprile	20,0	-	20,0	66,4	0,5
maggio	20,0	-	20,0	72,9	0,5
giugno	20,0	-	20,0	70,5	0,5
luglio	20,0	-	20,0	64,3	0,5
agosto	20,0	-	20,0	66,1	0,5
settembre	20,0	-	20,0	71,8	0,5
ottobre	20,0	-	20,0	90,7	0,5
novembre	20,0	-	20,0	94,7	0,5
dicembre	20,0	-	20,0	85,6	0,5

CONDIZIONE	Temperatura interna θi	Pressione parziale interna pi	Temperatura esterna θe	Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	20,00	1.984,50
ESTIVA	20,00	1.519,00	20,00	1.984,50

X	La struttura non è soggetta a fenomeni di condensa interstiziale.
	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 24,470 Pa.
	La struttura è soggetta a fenomeni di condensa.
	La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).
×	La struttura non è soggetta a fenomeni di condensa superficiale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 24,470 Pa.

VERIFICA FORMAZIONE MUFFE SUPERFICIALI

CONDIZIONI AL CONTORNO INTERNE ED ESTERNE

Mese	Temperatura esterna Te °C	Pressione esterna Pe Pa	Variazione di pressione ΔP Pa	Pressione interna Pi Pa	Temperatura interna Ti °C	Umidità relativa interna φi %
iviese	C	га	га	га		70
ottobre	20,0	2118,54	100	2218,54	20	91
novembre	20,0	2212,48	100	2312,48	20	95
dicembre	20,0	2001,44	100	2101,44	20	86
gennaio	20,0	1984,51	100	2084,51	20	85
febbraio	20,0	1728,2	100	1828,2	20	74
marzo	20,0	1481,35	100	1581,35	20	63
aprile	20,0	1552,35	100	1652,35	20	66

CALCOLO DEL FATTORE DI RISCHIO

La verifica della formazione di muffa è eseguita in maniera conforme a quanto riportato nella norma UNI EN ISO 13788

	Temperatura superficiale critica T _S i-critica	Fattore di rischio ammissibile frsi- amm
Mese	°C	-

ottobre	22,79	0
novembre	23,48	0
dicembre	21,9	0
gennaio	21,77	0
febbraio	19,64	0
marzo	17,32	0
aprile	18,02	0

Riepilogo dei risultati:

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione

Fattore di resistenza superficiale fRsi: 0,0000 (mese di Ottobre)

Fattore di resistenza superficiale ammissibile massimo fRsiAmm: 0,9733

ESITO VERIFICA DI MUFFA: OK

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	2.084,5	1.828,2	1.581,3	1.652,3	1.804,6	1.746,6	1.602,1	1.643,9	1.777,3	2.218,5	2.312,5	2.101,4
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	2.084,3	1.828,0	1.581,1	1.652,1	1.804,4	1.746,4	1.601,9	1.643,7	1.777,0	2.218,3	2.312,3	2.101,2
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
A-B	1.997,5	1.741,1	1.494,3	1.565,3	1.717,5	1.659,6	1.515,0	1.556,9	1.690,2	2.131,5	2.225,4	2.014,4
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
B-C	1.997,5	1.741,1	1.494,3	1.565,3	1.717,5	1.659,6	1.515,0	1.556,9	1.690,2	2.131,5	2.225,4	2.014,4
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
C-D	1.986,7	1.730,3	1.483,5	1.554,5	1.706,7	1.648,8	1.504,2	1.546,1	1.679,4	2.120,7	2.214,6	2.003,6
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
D-E	1.984,5	1.728,2	1.481,3	1.552,3	1.704,6	1.646,6	1.502,1	1.543,9	1.677,3	2.118,5	2.212,5	2.001,4
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
E-Add	1.984,5	1.728,2	1.481,3	1.552,3	1.704,6	1.646,6	1.502,1	1.543,9	1.677,3	2.118,5	2.212,5	2.001,4
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0

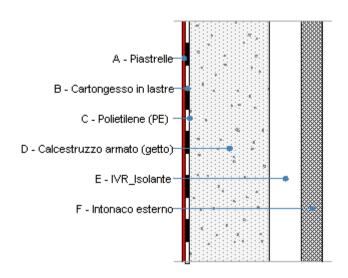
TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
A-B	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
B-C	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
C-D	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
D-E	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
E-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-Esterno	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. E/F												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]												

Verifica di condensa interstiziale:


Quantità massima di vapore accumulato mensilmente Gc: 0,0000 (mese di -) kg/m 2 nell'interfaccia -

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia Gc,max: 0,5000 kg/m²

Quantità di vapore residuo Ma: 0,0000 (mese di -) kg/m² nell'interfaccia -

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA febbiaio mairo Gennaio Febbraio Marzo apille тадаја giugna 20,0 Aprile Maggio Giugno lugla agasto settemble 20,0 20,0 Luglio Agosto Settembre attable navem Die dcemble Ottobre Dicembre Novembre LEGENDA Temperatura [°C] Pressione del vapore [Pa] Press. di saturazione [Pa]

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: Inveruno_CV05b

Note:

Tipologia:	<u>Parete</u>	Disposizione:	<u>Verticale</u>
Verso:	<u>Esterno</u>	Spessore:	<u>526,0</u> mm
Trasmittanza U:	0,209 W/(m ² K)	Resistenza R:	4,786 (m ² K)/W
Massa superf.:	762 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore	Conduttività	Resistenza R	Densità	Capacità term.	Fattore	Fattore
		s	λ	K	ρ	С	μа	μи
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-		-	-
Α	Piastrelle	10,0	1,000	0,010	2.300	0,84	213,2	999.99 9,0
В	Cartongesso in lastre	15,0	0,210	0,071	900	1,30	8,7	8,7
С	Polietilene (PE)	1,0	0,350	0,003	950	2,30	54.054 ,1	54.054 1,
D	Calcestruzzo armato (getto)	300,0	1,910	0,157	2.400	1,00	0,0	999.99
Е	IVR_Isolante	120,0	0,028	4,286	35	1,40	56,0	56,0
F	Intonaco esterno	80,0	0,900	0,089	1.800	1,00	16,7	16,7
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-			_
	TOTALE	526,0		4,786				

Conduttanza unitaria superficiale interna: 7,690 W/(m²K)

Resistenza unitaria superficiale interna: 0,130 (m²K)/W

Conduttanza unitaria superficiale esterna: 25,000 W/(m²K)

Resistenza unitaria superficiale esterna: 0,040 (m²K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	<u>Inveruno</u>	Zona climatica:	<u>E</u>
Trasmittanza della struttura U:	0,209 W/(m ² K)	Trasmittanza limite Ulim:	0,260 W/(m ² K)

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

ESITO VERIFICA DI TRASMITTANZA: -

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	Inveruno	Tipo di calcolo:	Classi di concentrazione
Verso:	<u>Esterno</u>	Coeff. di correzione btr,x:	
Classe di edificio:	Edifici con indice di affollamento non	Volume interno V:	_{- m} 3
Classe di edificio.	noto	Volume interno V.	- 111*
Produz. nota di vapore G:	- kg/h		

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	-	-0,1	84,9	0,5
febbraio	20,0	-	3,4	74,0	0,5
marzo	20,0	-	7,0	63,4	0,5
aprile	20,0	-	10,3	66,4	0,5
maggio	20,0	-	16,2	72,9	0,5
giugno	20,0	-	20,3	70,5	0,5
luglio	20,0	-	21,0	64,3	0,5
agosto	20,0	-	20,9	66,1	0,5
settembre	20,0	-	17,0	71,8	0,5
ottobre	20,0	-	11,4	90,7	0,5
novembre	20,0	-	5,9	94,7	0,5
dicembre	20,0	-	1,3	85,6	0,5

CONDIZIONE	Temperatura interna θi	Temperatura interna θi Pressione parziale interna pi Temperatura este		Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	-0,10	514,20
ESTIVA	20,00	1.615,60	21,00	1.597,60

X	La struttura non è soggetta a fenomeni di condensa interstiziale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 571,344 Pa.
	La struttura è soggetta a fenomeni di condensa.
	La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).
×	La struttura non è soggetta a fenomeni di condensa superficiale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 571,344 Pa.

VERIFICA FORMAZIONE MUFFE SUPERFICIALI

CONDIZIONI AL CONTORNO INTERNE ED ESTERNE

	Temperatura esterna Te	Pressione esterna Pe	Variazione di pressione ΔP	Pressione interna Pi	Temperatura interna Ti	Umidità relativa interna φi
Mese	°C	Pa	Pa	Pa	°C	%
ottobre	11,4	1221,38	405,3	1626,68	20	91
novembre	5,9	878,74	600,55	1479,29	20	95
dicembre	1,3	574,43	763,85	1338,28	20	86
gennaio	-0,1	514,17	810	1324,17	20	85
febbraio	3,4	576,19	689,3	1265,49	20	74
marzo	7,0	634,73	561,5	1196,23	20	63
aprile	10,3	831,79	444,35	1276,14	20	66

CALCOLO DEL FATTORE DI RISCHIO

La verifica della formazione di muffa è eseguita in maniera conforme a quanto riportato nella norma UNI EN ISO 13788

	Temperatura superficiale critica Tsi-critica	Fattore di rischio ammissibile frsi- amm
Mese	°C	-

ottobre	17,77	0,7408
novembre	16,27	0,7356
dicembre	14,71	0,7171
gennaio	14,55	0,7287
febbraio	13,85	0,6293
marzo	12,98	0,4602
aprile	13,98	0,3789

Riepilogo dei risultati:

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione

Fattore di resistenza superficiale fRsi: 0,7408 (mese di Ottobre)

Fattore di resistenza superficiale ammissibile massimo fRsiAmm: 0,9728

ESITO VERIFICA DI MUFFA: OK

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.324,2	1.265,5	1.196,2	1.276,1	1.577,5	1.766,8	1.662,1	1.700,1	1.596,5	1.626,7	1.479,3	1.338,3
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.297,3	1.242,7	1.177,6	1.261,4	1.569,7	1.763,8	1.660,0	1.697,9	1.589,6	1.613,3	1.459,4	1.313,0
	2.253,2	2.267,6	2.282,5	2.296,2	2.320,9	2.338,2	2.341,2	2.340,8	2.324,3	2.300,8	2.277,9	2.259,0
A-B	1.295,7	1.241,3	1.176,5	1.260,5	1.569,2	1.763,6	1.659,8	1.697,7	1.589,2	1.612,4	1.458,2	1.311,4
	2.211,5	2.232,9	2.255,1	2.275,7	2.312,8	2.338,9	2.343,4	2.342,7	2.317,8	2.282,5	2.248,3	2.220,1
B-C	615,5	662,4	705,0	887,4	1.372,0	1.688,6	1.605,7	1.640,6	1.415,8	1.272,1	953,9	670,0
	2.209,9	2.231,6	2.254,1	2.274,8	2.312,4	2.338,9	2.343,4	2.342,8	2.317,6	2.281,8	2.247,2	2.218,5
C-D	615,5	662,4	705,0	887,4	1.372,0	1.688,6	1.605,7	1.640,6	1.415,8	1.272,1	953,9	670,0
	2.120,6	2.157,0	2.194,9	2.230,3	2.294,6	2.340,3	2.348,2	2.347,1	2.303,5	2.242,1	2.183,3	2.135,1
D-E	531,0	590,5	646,4	841,0	1.347,4	1.679,3	1.598,9	1.633,5	1.394,2	1.229,8	891,2	590,3
	630,4	804,1	1.025,7	1.274,2	1.852,7	2.379,5	2.481,5	2.466,7	1.946,6	1.368,1	952,9	695,4
E-F	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	613,5	786,8	1.008,8	1.259,0	1.844,4	2.380,3	2.484,3	2.469,2	1.939,7	1.353,7	935,8	678,3
F-Add	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	605,5	779,2	1.001,3	1.252,2	1.840,6	2.380,7	2.485,6	2.470,4	1.936,6	1.347,3	928,2	670,7

TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	19,5	19,5	19,6	19,7	19,9	20,0	20,0	20,0	19,9	19,8	19,6	19,5
A-B	19,4	19,5	19,6	19,7	19,9	20,0	20,0	20,0	19,9	19,7	19,6	19,5
B-C	19,1	19,3	19,4	19,6	19,8	20,0	20,0	20,0	19,9	19,6	19,4	19,2
C-D	19,1	19,3	19,4	19,6	19,8	20,0	20,0	20,0	19,9	19,6	19,4	19,2
D-E	18,4	18,7	19,0	19,2	19,7	20,0	20,1	20,1	19,8	19,3	18,9	18,5
E-F	0,4	3,8	7,4	10,6	16,3	20,3	21,0	20,9	17,1	11,6	6,3	1,8
F-Add	0,1	3,5	7,1	10,4	16,2	20,3	21,0	20,9	17,0	11,5	6,0	1,5
Add-Esterno	-0,1	3,4	7,0	10,3	16,2	20,3	21,0	20,9	17,0	11,4	5,9	1,3

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. E/F												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]												

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente Gc: 0,0000 (mese di -) kg/m^2 nell'interfaccia -

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia $G_{c,max}$: 0,5000 kg/m 2

Quantità di vapore residuo Ma: 0,0000 (mese di -) kg/m² nell'interfaccia -

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA p2.500 p2.500 Fl^{2,500} 20_F 2,000 12,000 2000 1,500 1500 1.500 1,000 Febbraio Marzo Gennaio арі le т*а*доја giugna 2.500 2,000 1,500 H1.500 H1.000 1,000 El₅₀₀ E]500 Aprile Maggio Giugno settemble lugia agasto 2.500 12,000 H1500 1,000 E|₅₀₀ Luglio Agosto Settembre attable navem Die doemble FI^{2,500} 2,000 2,000 101 1.500 1500 1500 H1.000 H1.000 1,000 Ottobre Novembre Dicembre LEGENDA Temperatura [°C] Pressione del vapore [Pa] Press. di saturazione [Pa]

VERIFICA DI MASSA E INERZIA TERMICA

Il comportamento termico dinamico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13786.

Verifica di massa:

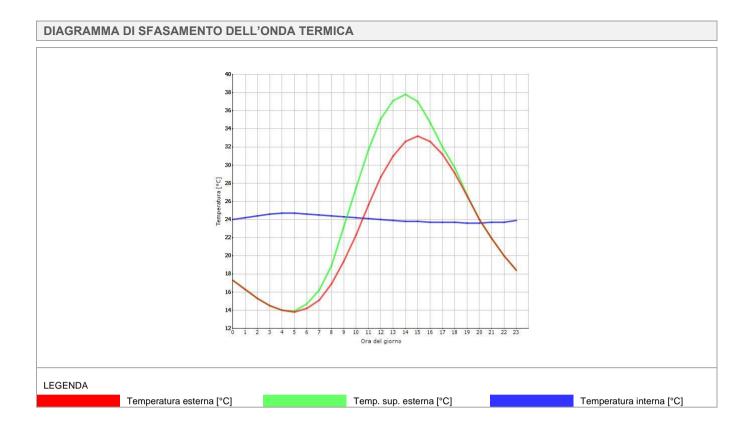
Massa della struttura per metro quadrato di superficie: 762 kg/m²

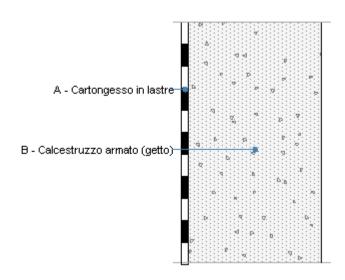
Valore minimo di massa superficiale: 230 kg/m 2

ESITO VERIFICA DI MASSA: OK

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

CONDIZIONI AL CONTORNO


Comune:	Inveruno	Colorazione:	<u>Chiaro</u>
Orientamento:	<u>s</u>	Mese massima insolazione:	luglio
Temp. media mese massima insolaz.:	24,3 °C	Temperatura massima estiva:	30,7 °C
Escursione giorno più caldo dell'anno:	11,5 °C	Irradian. mensile massima piano orizz.:	275,46 W/m ²


INERZIA TERMICA

Tempo sfasamento dell'onda termica:	14h 51'	Fattore di attenuazione:	0,0443
Capacità termica interna C1:	$58,0 \text{ kJ/(m}^2/\text{K})$	Capacità termica esterna C2:	114,0 kJ/(m ² /K)
Ammettenza interna oraria:	12,9 W/(m ² /K)	Ammettenza interna in modulo:	4,2 W/(m ² /K)
Ammettenza esterna oraria:	15,6 W/(m ² /K)	Ammettenza esterna in modulo:	8,3 W/(m ² /K)
Trasmittanza termica periodica Y:	0,009 W/(m ² K)	Classificazione struttura da normativa:	
Trasmitt. termica periodica limite Ylim:	0,100 W/(m ² K)		

ESITO VERIFICA DI INERZIA: OK

	Temperatura esterna nel giorno più caldo Te	Irradiazione solare nel giorno più caldo dell'anno le	Temp. superficiale esterna nel giorno più caldo Te,sup	Temperatura interna nel giorno più caldo Ti
Ora	°C	W/m²	°C	°C
0:00	17,26	0,00	17,26	24,04
1:00	16,29	0,00	16,29	24,23
2:00	15,32	0,00	15,32	24,42
3:00	14,54	0,00	14,54	24,57
4:00	13,96	0,00	13,96	24,66
5:00	13,77	10,00	13,89	24,69
6:00	14,16	49,00	14,74	24,65
7:00	15,13	85,75	16,15	24,55
8:00	16,87	173,00	18,95	24,43
9:00	19,39	315,75	23,18	24,33
10:00	22,30	432,75	27,50	24,19
11:00	25,60	508,25	31,70	24,08
12:00	28,71	534,25	35,12	23,98
13:00	31,03	508,25	37,13	23,90
14:00	32,59	432,75	37,78	23,83
15:00	33,17	315,75	36,96	23,78
16:00	32,59	173,00	34,66	23,73
17:00	31,23	66,50	32,03	23,69
18:00	29,09	49,50	29,69	23,66
19:00	26,57	10,00	26,69	23,63
20:00	24,05	0,00	24,05	23,63
21:00	21,92	0,00	21,92	23,67
22:00	19,98	0,00	19,98	23,73
23:00	18,42	0,00	18,42	23,85

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: Inveruno_CV06 NR

Note:

Tipologia:	<u>Parete</u>	Disposizione:	<u>Verticale</u>
Verso:	Zona non riscaldata	Spessore:	315,0 mm
Trasmittanza U:	2,047 W/(m ² K)	Resistenza R:	0,489 (m ² K)/W
Massa superf.:	734 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore	Conduttività	Resistenza	Densità	Capacità term.	Fattore	Fattore
	Suato	s	λ	R	ρ	С	μа	μи
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-	-
_ A	Cartongesso in lastre	15,0	0,210	0,071	900	1,30	8,7	8,7
В	Calcestruzzo armato (getto)	300,0	1,910	0,157	2.400	1,00	0,0	999.99 9,0
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-	-
	TOTALE	315,0		0,489				

Conduttanza unitaria superficiale interna: 7,690 W/(m²K)

Resistenza unitaria superficiale interna: 0,130 (m²K)/W

Conduttanza unitaria superficiale esterna: 7,690 W/(m²K)

Resistenza unitaria superficiale esterna: 0,130 (m²K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	<u>Inveruno</u>	Zona climatica:	<u>E</u>
Trasmittanza della struttura U:	2,047 W/(m ² K)	Trasmittanza limite Ulim:	0,260 W/(m ² K)

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

ESITO VERIFICA DI TRASMITTANZA: -

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	<u>Inveruno</u>	Tipo di calcolo:	Classi di concentrazione
Verso:	Zona non riscaldata	Coeff. di correzione btr,x:	0,0
Classe di adificio	Edifici con indice di affollamento non	Volume interno V:	- m3
Classe di edificio:	noto	volume interno v.	- 1110
Produz. nota di vapore G:	- kg/h		

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	-	20,0	84,9	0,5
febbraio	20,0	-	20,0	74,0	0,5
marzo	20,0	-	20,0	63,4	0,5
aprile	20,0	-	20,0	66,4	0,5
maggio	20,0	-	20,0	72,9	0,5
giugno	20,0	-	20,0	70,5	0,5
luglio	20,0	-	20,0	64,3	0,5
agosto	20,0	-	20,0	66,1	0,5
settembre	20,0	-	20,0	71,8	0,5
ottobre	20,0	-	20,0	90,7	0,5
novembre	20,0	-	20,0	94,7	0,5
dicembre	20,0	-	20,0	85,6	0,5

CONDIZIONE	Temperatura interna θi	Pressione parziale interna pi	Temperatura esterna θe	Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	20,00	1.984,50
ESTIVA	20,00	1.519,00	20,00	1.984,50

X	La struttura non è soggetta a fenomeni di condensa interstiziale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 24,470 Pa.
	La struttura è soggetta a fenomeni di condensa.
	La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).
×	La struttura non è soggetta a fenomeni di condensa superficiale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 24,470 Pa.

VERIFICA FORMAZIONE MUFFE SUPERFICIALI

CONDIZIONI AL CONTORNO INTERNE ED ESTERNE

Mese	Temperatura esterna Te °C	Pressione esterna Pe Pa	Variazione di pressione ΔP Pa	Pressione interna Pi Pa	Temperatura interna Ti °C	Umidità relativa interna φi %
ottobre	20,0	2118,54	100	2218,54	20	91
novembre	20,0	2212,48	100	2312,48	20	95
dicembre	20,0	2001,44	100	2101,44	20	86
gennaio	20,0	1984,51	100	2084,51	20	85
febbraio	20,0	1728,2	100	1828,2	20	74
marzo	20,0	1481,35	100	1581,35	20	63
aprile	20,0	1552,35	100	1652,35	20	66

CALCOLO DEL FATTORE DI RISCHIO

La verifica della formazione di muffa è eseguita in maniera conforme a quanto riportato nella norma UNI EN ISO 13788

	Temperatura superficiale critica Tsi-critica	Fattore di rischio ammissibile frsi- amm
Mese	°C	-

ottobre	22,79	0
novembre	23,48	0
	·	
dicembre	21,9	0
gennaio	21,77	0
febbraio	19,64	0
marzo	17,32	0
aprile	18.02	0

Riepilogo dei risultati:

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione

Fattore di resistenza superficiale fRsi: 0,0000 (mese di Ottobre)

Fattore di resistenza superficiale ammissibile massimo fRsiAmm: 0,7339

ESITO VERIFICA DI MUFFA: OK

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	2.084,5	1.828,2	1.581,3	1.652,3	1.804,6	1.746,6	1.602,1	1.643,9	1.777,3	2.218,5	2.312,5	2.101,4
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.984,5	1.728,2	1.481,3	1.552,3	1.704,6	1.646,6	1.502,1	1.543,9	1.677,3	2.118,5	2.212,5	2.001,4
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
A-B	1.984,5	1.728,2	1.481,3	1.552,3	1.704,6	1.646,6	1.502,1	1.543,9	1.677,3	2.118,5	2.212,5	2.001,4
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
B-Add	1.984,5	1.728,2	1.481,3	1.552,3	1.704,6	1.646,6	1.502,1	1.543,9	1.677,3	2.118,5	2.212,5	2.001,4
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0

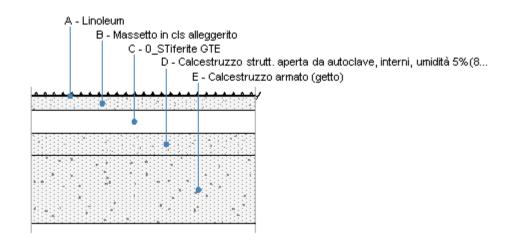
TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
A-B	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
B-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-Esterno	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
	0,0000 0,0000 0,0000	0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	0,0000 0,0000<	0,0000 0,0000<	0,0000 0,0000<	0,0000 0,0000<	0,0000 0,0000<	0,0000 0,0000<

Verifica di condensa interstiziale:


Quantità massima di vapore accumulato mensilmente Gc: 0,0000 (mese di -) kg/m² nell'interfaccia -

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia Gc,max: 0,5000 kg/m²

Quantità di vapore residuo Ma: 0,0000 (mese di -) kg/m² nell'interfaccia -

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA febbiaio mairo Gennaio Febbraio Marzo арі le тадаја giugna Aprile Maggio Giugno lugla agasto settemble Luglio Agosto Settembre attable navem Die dcemble Ottobre Dicembre Novembre LEGENDA Temperatura [°C] Pressione del vapore [Pa] Press. di saturazione [Pa]

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: Inveruno_PO02

Note:

Tipologia:	<u>Pavimento</u>	Disposizione:	<u>Orizzontale</u>
Verso:	Zona non riscaldata	Spessore:	<u>564,0</u> mm
Trasmittanza U:	0,181 W/(m ² K)	Resistenza R:	5,522 (m ² K)/W
Massa superf.:	904 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Otrosto		Conduttività	Resistenza	Densità	Capacità term.	Fattore	Fattore
	Strato	s	λ	R	ρ	С	μа	μu
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso verticale discendente)	-	-	0,170	-	-	-	
Α	Linoleum	4,0	0,170	0,024	1.200	1,40	1.000, 0	800,0
В	Massetto in cls alleggerito	60,0	1,080	0,056	1.600	1,00	3,3	3,3
С	0_STiferite GTE	100,0	0,022	4,545	34	1,40	89.900 ,0	89.900 ,0
D	Calcestruzzo strutt. aperta da autoclave, interni, umidità 5%(800 kg/m3)	100,0	0,250	0,400	800	0,88	5,6	3,3
E	Calcestruzzo armato (getto)	300,0	1,910	0,157	2.400	1,00	0,0	999.99
	Adduttanza interna (flusso verticale discendente)	-	-	0,170	-	-	_	
	TOTALE	564,0		5,522				

Conduttanza unitaria superficiale interna: 5,880 W/(m²K)

Resistenza unitaria superficiale interna: 0,170 (m²K)/W

Conduttanza unitaria superficiale esterna: 5,880 W/(m²K)

Resistenza unitaria superficiale esterna: 0,170 (m²K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	<u>Inveruno</u>	Zona climatica:	<u>E</u>
Trasmittanza della struttura U:	0,181 W/(m ² K)	Trasmittanza limite Ulim:	0,260 W/(m ² K)

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

ESITO VERIFICA DI TRASMITTANZA: -

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	<u>Inveruno</u>	Tipo di calcolo:	Classi di concentrazione	
Verso:	Zona non riscaldata	Coeff. di correzione btr,x:	0,0	
Classe di edificio:	Edifici con indice di affollamento non	Volume interno V:	- m3	
Classe di edificio.	noto	volume interno v.	- 1110	
Produz. nota di vapore G:	- kg/h			

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	-	20,0	84,9	0,5
febbraio	20,0	-	20,0	74,0	0,5
marzo	20,0	-	20,0	63,4	0,5
aprile	20,0	-	20,0	66,4	0,5
maggio	20,0	-	20,0	72,9	0,5
giugno	20,0	-	20,0	70,5	0,5
luglio	20,0	-	20,0	64,3	0,5
agosto	20,0	-	20,0	66,1	0,5
settembre	20,0	-	20,0	71,8	0,5
ottobre	20,0	-	20,0	90,7	0,5
novembre	20,0	-	20,0	94,7	0,5
dicembre	20,0	-	20,0	85,6	0,5

CONDIZIONE	Temperatura interna θi	Pressione parziale interna pi	Temperatura esterna θe	Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	20,00	1.984,50
ESTIVA	20,00	1.519,00	20,00	1.984,50

X	La struttura non è soggetta a fenomeni di condensa interstiziale.				
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 24,470 Pa.				
	La struttura è soggetta a fenomeni di condensa.				
	La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).				
La struttura non è soggetta a fenomeni di condensa superficiale.					
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 24,470 Pa.				

VERIFICA FORMAZIONE MUFFE SUPERFICIALI

CONDIZIONI AL CONTORNO INTERNE ED ESTERNE

Mese	Temperatura esterna Te °C	Pressione esterna Pe Pa	Variazione di pressione ΔP Pa	Pressione interna Pi Pa	Temperatura interna Ti °C	Umidità relativa interna φi %
ottobre	20,0	2118,54	100	2218,54	20	91
novembre	20,0	2212,48	100	2312,48	20	95
dicembre	20,0	2001,44	100	2101,44	20	86
gennaio	20,0	1984,51	100	2084,51	20	85
febbraio	20,0	1728,2	100	1828,2	20	74
marzo	20,0	1481,35	100	1581,35	20	63
aprile	20,0	1552,35	100	1652,35	20	66

CALCOLO DEL FATTORE DI RISCHIO

La verifica della formazione di muffa è eseguita in maniera conforme a quanto riportato nella norma UNI EN ISO 13788

	Temperatura superficiale critica Tsi-critica	Fattore di rischio ammissibile frsi- amm
Mese	°C	-

ottobre	22,79	0
novembre	23,48	0
dicembre	21,9	0
gennaio	21,77	0
febbraio	19,64	0
marzo	17,32	0
aprile	18,02	0

Riepilogo dei risultati:

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione

Fattore di resistenza superficiale fRsi: 0,0000 (mese di Ottobre)

Fattore di resistenza superficiale ammissibile massimo fRsiAmm: 0,9765

ESITO VERIFICA DI MUFFA: OK

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	2.084,5	1.828,2	1.581,3	1.652,3	1.804,6	1.746,6	1.602,1	1.643,9	1.777,3	2.218,5	2.312,5	2.101,4
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	2.084,5	1.828,2	1.581,3	1.652,3	1.804,6	1.746,6	1.602,0	1.643,9	1.777,2	2.218,5	2.312,4	2.101,4
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
A-B	2.084,5	1.828,2	1.581,3	1.652,3	1.804,5	1.746,6	1.602,0	1.643,9	1.777,2	2.218,5	2.312,4	2.101,4
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
B-C	1.984,5	1.728,2	1.481,4	1.552,4	1.704,6	1.646,6	1.502,1	1.543,9	1.677,3	2.118,5	2.212,5	2.001,4
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
C-D	1.984,5	1.728,2	1.481,3	1.552,3	1.704,6	1.646,6	1.502,1	1.543,9	1.677,3	2.118,5	2.212,5	2.001,4
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
D-E	1.984,5	1.728,2	1.481,3	1.552,3	1.704,6	1.646,6	1.502,1	1.543,9	1.677,3	2.118,5	2.212,5	2.001,4
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
E-Add	1.984,5	1.728,2	1.481,3	1.552,3	1.704,6	1.646,6	1.502,1	1.543,9	1.677,3	2.118,5	2.212,5	2.001,4
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0

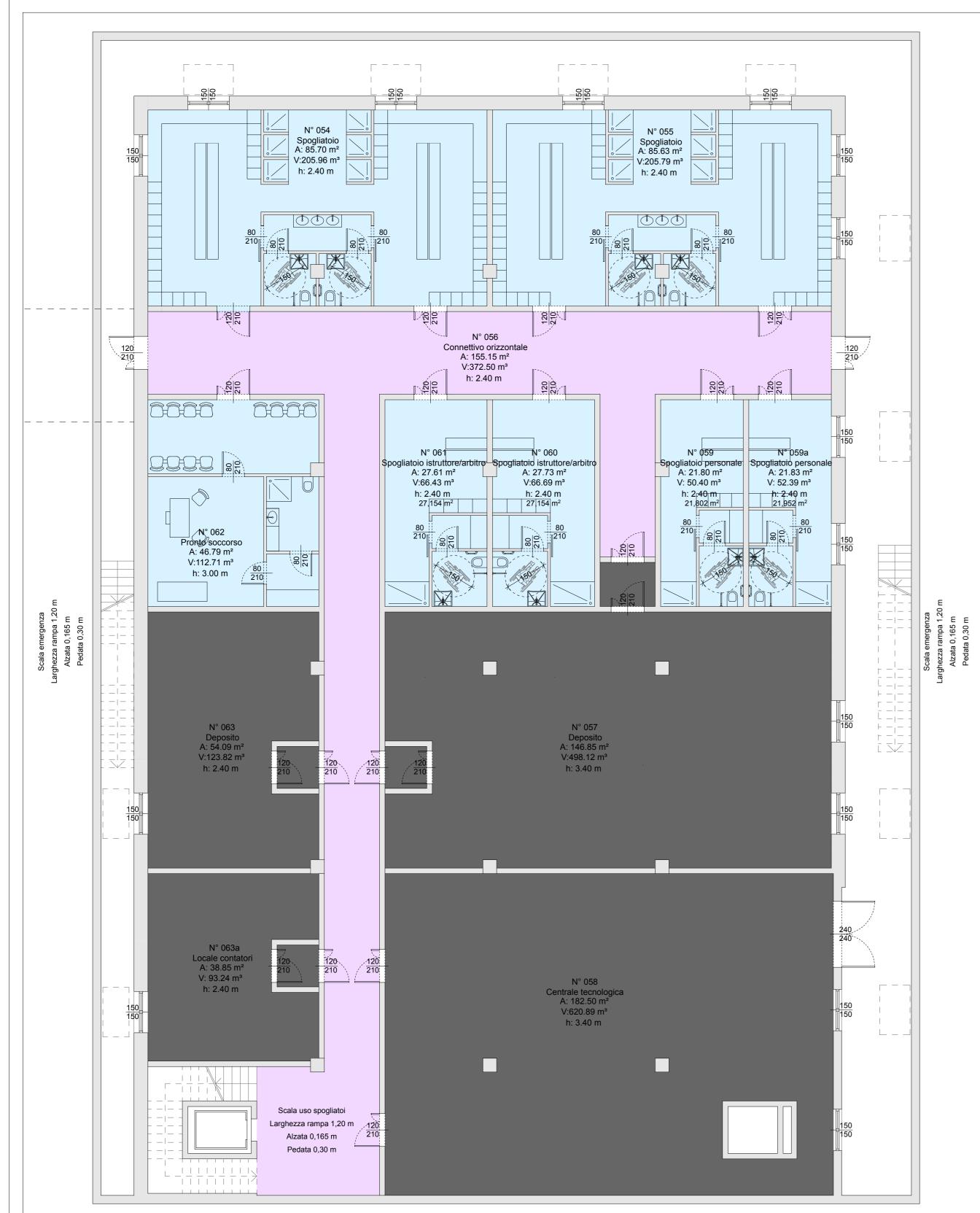
TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
A-B	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
B-C	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
C-D	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
D-E	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
E-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-Esterno	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. E/F												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]												

Verifica di condensa interstiziale:


Quantità massima di vapore accumulato mensilmente Gc: 0,0000 (mese di -) kg/m^2 nell'interfaccia -

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia Gc,max: 0,5000 kg/m²

Quantità di vapore residuo Ma: 0,0000 (mese di -) kg/m² nell'interfaccia -

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA febbiáo mairo Gennaio Febbraio Marzo арі le тадаја giugna Aprile Maggio Giugno lugla agasto settemble Luglio Settembre Agosto attable navem Die dcemble Novembre Ottobre Dicembre LEGENDA Pressione del vapore [Pa] Temperatura [°C] Press. di saturazione [Pa]

LOCALE	Sup. Locale		Sup. richiesta 1/8	Sup. Utile Aerante	R.A. (S.U.F./S.L.)	Sup. Utile Illuminante	R.I. (S.U.F./S.L.)
INTERRATO							
Distribuzione (056)	155,15	mq	-	-	Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	-	Integrazione con illuminazione dinamica e dimerabile come da norma UNI 12464 (vedi relazione tecnica)
Spogliatoio (054)	85,70	mq	85,70/8 = 10,71 mq	(1,50 m x 1,50 m) x 3 = 6,75 mq	6,75 < 10,71 Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	-	Integrazione con illuminazione dinamica e dimerabile come da norma UNI 12464 (vedi relazione tecnica)
Spogliatoio (055)	85,63	mq	85,63/8 = 10,71 mq	(1,50 m x 1,50 m) x 3 = 6,75 mq	6,75 < 10,71 Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	-	Integrazione con illuminazione dinamica e dimerabile come da norma UNI 12464 (vedi relazione tecnica)
Spogliatoio personale (059)	21,80	mq	21,80/8 = 2,73 mq	-	Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	-	Integrazione con illuminazione dinamica e dimerabile come da norma UNI 12464 (vedi relazione tecnica)
Spogliatoio personale (059a)	21,83	mq	21,83/8 = 2,73 mq	(1,50 m x 1,50 m) x 2 = 4,50 mq	4,50 > 2,73 Verificato	-	Integrazione con illuminazione dinamica e dimerabile come da norma UNI 12464 (vedi relazione tecnica)
Spogliatoio istruttore (060)	27,73	mq	27,73/8 = 3,45 mq	-	Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	-	Integrazione con illuminazione dinamica e dimerabile come da norma UNI 12464 (vedi relazione tecnica)
Spogliatoio istruttore (061)	27,61	mq	27,61/8 = 3,45 mq	-	Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	-	Integrazione con illuminazione dinamica e dimerabile come da norma UNI 12464 (vedi relazione tecnica)
Pronto soccorso (062)	46,79	mq	46,79/8 = 5,85 mq	-	Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	-	Integrazione con illuminazione dinamica e dimerabile come da norma UNI 12464 (vedi relazione tecnica)
Deposito (057)	146,85	mq	146,79/8 = 18,35 mq	(1,50 m x 1,50 m) x 2 = 4,50 mq		-	
Centrale termica (058)	182,50	mq	182,50/8 = 22,81 mq	(1,50 m x 1,50 m) x 2 = 4,50 mq		-	
Deposito 063)	54,09	mq	54,09/8 = 6,76 mq	(1,50 m x 1,50 m) x 2 = 4,50 mq		-	
Locale contatori (063a)	38,85	mq	38,85/8 = 4,86 mq	(1,50 m x 1,50 m) x 2 = 4,50 mq		-	

Numero	Nome	Area	Volume	Altezza (m		
D.M. 3.3 Attivit	à complementari_Connettivo e servizi igie	enici				
056	Connettivo orizzontale	155.15 m ²	372.50 m³	240.00		
D.M. 4 Spazi po 054	er l'educazione fisica_Palestra, servizi Pal	estra 85.70 m²	205.96 m³	240.00		
054 055	Spogliatoio Spogliatoio	85.63 m ²	205.96 m ³	240.00		
059	· ·	21.80 m ²	52.32 m ³	240.00		
059 059a	Spogliatoio personale Spogliatoio personale	21.83 m ²	52.32 m ³	240.00		
060	Spogliatoio jersonale Spogliatoio istruttore/arbitro	27.73 m ²	66.69 m ³	240.00		
060 061		27.73 III ⁻	66.43 m³	240.00		
062	Spogliatoio istruttore/arbitro Pronto soccorso	46.79 m ²	112.71 m ³	240.00		
002	Piolito soccoiso	46.79 111	112.71111	240.00		
D.M. 5 Altro						
057	Deposito	146.85 m²	498.12 m³	340.00		
058	Centrale tecnologica	182.50 m²	620.89 m³	340.00		
063	Deposito	95.94 m²	230.30 m³	240.00		
066	Filtro fumo	3.62 m²	8.69 m³	240.00		
067	Filtro fumo	2.30 m ²	5.53 m³	240.00		
068	Filtro fumo	2.33 m²	7.91 m³	340.00		
069	Filtro fumo	2.30 m ²	5.53 m³	240.00		
Numero locali:	14	911.08 m²	2519.23 m³	1		

NUOVO PLESSO SCOLASTICO - VIA IV NOVEMBI

Azienda tutela della Salute (ATS)

Edificio A - Pianta piano interrato

Tavola n°:

NUOVO PLESSO SCOLASTICO - VIA IV NOVEMBRE PROGETTO DEFINITIVO PROGETTISTA: UFFICIO TECNICO COMUNE DI INVERUNO R.U.P.: Geom. Pietro Tiberti Progettista: Arch. Claudia Soldati CONSULENTE SCIENTIFICO: Data: Politecnico di Milano - Dipartimento ABC 07.01.2020 Titolo progetto di ricerca: tecnologica-energetica con l'applicazione della metodologia BIM Individuazione di un nuovo modello di scuola innovativa ad alta efficienza RESPONSABILE SCIENTIFICO: Prof. Tomaso Monestiroli GRUPPO DI LAVORO: Prof. Maurizio Acito Prof. Giuseppe Martino Di Giuda Prof. Paolo Oliaro Aggiornamento Arch. Francesco Menegatti Arch. Luca Cardani Arch. Alberto Cariboni Ing. Vito Lavermicocca Ing. Mariagrazia Calia Ing. Agata Consoli BIMGroup: Ing. Marco Schievano, Ing. Francesco Paleari, Ing. Paolo Ettore Giana, Ing. Elena Seghezzi, Ing. Giulia Pattini CONSULENTE SCIENTIFICO: Scala: Università degli studi di Milano Bicocca Dipartimento di Scienze Umane per la Formazione "Riccardo Massa" RESPONSABILE SCIENTIFICO: Prof.ssa Elisabetta Nigris GRUPPO DI LAVORO: Prof.ssa Barbara Balconi Prof.ssa Luisa Zecca Prof.ssa Ambra Cardani

D.M. 1.1 Attività didattiche_Normali	D.M. 3.1 Attività complementari_Atrio
D.M. 1.2 Attività didattiche_Speciali	D.M. 3.2 Attività complementari_Uffici
D.M. 1.3 Attività didattiche_Laboratori	D.M. 3.3 Attività complementari_Connettivo e servizi igienici
D.M. 2.1 Attività collettive_Integrative e parascolastiche	D.M. 4 Spazi per l'educazione fisica_Palestra, servizi Palestra


D.M. 5 Altro

Locali D.M. 18.12.1975

D.M. 2.2 Attività collettive_Biblioteca

D.M. 2.3 Attività collettive_Mensa e relativi servizi

	Nome	Area	Volume	Altezza (m)
		·		,
D.M. 1.1 Attivita	à didattiche_Normali			
035	Aula didattica	50.35 m ²	151.04 m³	300.00
036	Aula didattica	50.13 m ²	150.39 m³	300.00
037	Aula didattica	51.53 m ²	154.60 m ³	300.00
040	Aula didattica	51.53 m²	154.60 m ³	300.00
041	Aula didattica	50.13 m²	150.40 m³	300.00
042	Aula didattica	50.35 m²	151.04 m³	300.00
D.M. 1.3 Attivită	à didattiche_Laboratori			
030	Aula laboratorio	81.40 m²	244.20 m ³	300.00
038	Aula laboratorio	79.03 m²	237.08 m ³	300.00
039	Aula laboratorio	79.03 m²	237.08 m³	300.00
047	Aula laboratorio	81.40 m ²	244,20 m ³	300.00
D.M. 2.1 Attivita 031	à collettive_Integrative e parascolastich Aula professori	e 54.40 m²	163.20 m³	300.00
031	Aula professori	54.40 m²	163.20 m³	300.00
031 D.M. 3.3 Attivita	Aula professori à complementari_Connettivo e servizi iç	54.40 m²	163.20 m³ 44.93 m³	300.00 240.00
031 D.M. 3.3 Attivita 032	Aula professori à complementari_Connettivo e servizi iç Servizi igienici	54.40 m² gienici		
031 D.M. 3.3 Attivita 032 033	Aula professori à complementari_Connettivo e servizi iç	54.40 m² gienici 18.36 m²	44.93 m³	240.00
D.M. 3.3 Attivita D32 D33 D43	Aula professori à complementari_Connettivo e servizi iç Servizi igienici Servizi igienici	54.40 m² gienici 18.36 m² 28.71 m²	44.93 m³ 71.57 m³	240.00 240.00
031	Aula professori à complementari_Connettivo e servizi ig Servizi igienici Servizi igienici Connettivo orizzontale	54.40 m ² gienici 18.36 m ² 28.71 m ² 320.93 m ²	44.93 m³ 71.57 m³ 867.37 m³	240.00 240.00 270.00

Comune di Inveruno - (MI)

RELAZIONE TECNICA

Attestante la rispondenza alle prescrizioni in materia di contenimento del consumo energetico degli edifici

EDIFICIO:	Realizzazione del nuovo plesso scolastico di Inveruno - Via IV Novembre - Scuola Primaria
INDIRIZZO	Via IV Novembre, Inveruno (MI)
COMMITTENTE:	Comune di Inveruno
PROGETTISTA:	Ing. Paolo Oliaro
	Firma:

Egregio Signor Sindaco del comune di Inveruno, (MI) e per conoscenza all'Ufficio Tecnico del comune di Inveruno, (MI)

RELAZIONE TECNICA DI CUI AL COMMA 1 DELL'ARTICOLO 8 DEL DECRETO LEGISLATIVO 19 AGOSTO 2005, N. 192, ATTESTANTE LA RISPONDENZA ALLE PRESCRIZIONI IN MATERIA DI CONTENIMENTO DEL CONSUMO ENERGETICO DEGLI EDIFICI

Nuove costruzioni, ristrutturazioni importanti di primo livello, edifici ad energia quasi zero

Un edificio esistente è sottoposto a ristrutturazione importante di primo livello quando l'intervento ricade nelle tipologie indicate al paragrafo 1.4.1, comma 3, lettera a) dell'Allegato 1 del decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005.

1 INFORMAZIONI GENERALI	
Common di Immonore	Presidentia MI
Comune di Inveruno	Provincia MI
Progetto per la realizzazione di	
Realizzazione del nuovo plesso scolastico di Inve	runo - Via IV Novembre - Scuola Primaria
X Edificio pubblico	
X Edificio ad uso pubblico	
Sito in	
Mappale	
Sezione	
Foglio	
Particella	
Subalterni	
Richiesta Permesso di Costruire N	Del
Permesso di Costruire N	Del
Variante Permesso di Costruire N	Del
decreto di cui all'articolo 4, comma 1 del decreto legi categorie differenti, specificare le diverse categorie)) in base alla categoria di cui al punto 1.2 dell'allegato 1 del slativo 192/2005; per edifici costituiti da parti appartenenti a
E.7 attività scolastiche a tutti i livelli e assimil	abili
Numero delle unità immobiliari 1	
Soggetti coinvolti	
Committente	Comune di Inveruno
Progettista degli impianti termici	Arch. Claudia Soldati
Progettista dell'isolamento termico dell'edificio	Arch. Claudia Soldati
Progettista del sistema di ricambio dell'aria dell'edificio	Arch. Claudia Soldati
Direttore dei lavori per l'isolamento termico dell'edificio	
Direttore dei lavori per la realizzazione degli impianti te	rmici
Direttore dei lavori del sistema di ricambio dell'aria del	'edificio
Progettista dei sistemi di illuminazione dell'edificio	Arch. Claudia Soldati

Direttore dei lavori dei sistemi di illuminazione dell'edificio	
Tecnico incaricato per la redazione dell'APE	

2 FATTORI TIPOLOGICI DELL'EDIFICIO

Seleziona gli elementi tipologici da fornire, al solo scopo di supportare la presente rela	zione tecnica:
X Piante di ciascun piano degli edifici con orientamento e indicazione d'uso prevaler definizione degli elementi costruttivi	nte dei singoli locali e
Prospetti e sezioni degli edifici con evidenziazione dei sistemi di protezione solare elementi costruttivi	e definizione degli
Elaborati grafici relativi ad eventuali sistemi solari passivi specificatamente proget sfruttamento degli apporti solari	tati per favorire lo
3 PARAMETRI CLIMATICI DELLA LOCALITÀ	
Gradi giorno (della zona d'insediamento, determinati in base al DPR 412/93) GG	2609
Temperatura minima di progetto (dell'aria esterna norma UNI 5364 e succ agg.) K	268,1
Temperatura massima estiva di progetto dell'aria esterna secondo norma	303.8

4 DATI TECNICI E COSTRUTTIVI DELL'EDIFICIO (O DEL COMPLESSO DI EDIFICI) E DELLE RELATIVE STRUTTURE

Climatizzazione invernale

Unità immobiliare	S [m ²]	V [m ³]	S/V	Su [m ²]
Scuola Inveruno	7.262,22	16.321,20	0,44	3.125,9 1

S Superficie disperdente che delimita il volume climatizzato

V Volume delle parti di edificio climatizzate al lordo delle strutture che li delimitano

Su superficie utile climatizzata dell'edificio

Unità immobiliare	Zona climatizzata	Tinv [°C]	φinv [%]
Scuola Inveruno	B. Scuola primaria	20,0	50
Scuola Inveruno	Refettorio	20,0	50
Scuola Inveruno	Palestra	20,0	50

Tinv Valore di progetto della temperatura interna invernale φinv valore di progetto dell'umidità relativa interna per la climatizzazione invernale

Unità immobiliare	Presenza contabilizzazione	Metodo
Scuola Inveruno		-

Climatizzazione estiva

Unità immobiliare	S [m ²]	V [m ³]	Su [m ²]
Scuola Inveruno	7.262,22	16.321,20	3.125,9 1

S Superficie disperdente che delimita il volume climatizzato

S/V rapporto tra superficie disperdente e volume lordi o fattore di forma dell'edificio

V Volume delle parti di edificio climatizzate al lordo delle strutture che li delimitano

Su Superficie utile climatizzata dell'edificio

Unità immobiliare	Zona climatizzata	Test [°C]	φest [%]
Scuola Inveruno	B. Scuola primaria	26,0	50
Scuola Inveruno	Refettorio	26,0	50
Scuola Inveruno	Palestra	26,0	50

Test Valore di progetto della temperatura interna estiva Φest Valore di progetto dell'umidità relativa interna estiva

Produzione di energia elettrica

Unità immobiliare	Presenza contabilizzazione	Metodo
Scuola Inveruno		-

Informazioni generali e prescrizioni	
Presenza di reti di teleriscaldamento/raffreddamento a me	no di 1000 m [] Si [x] No
Se "sì" descrivere le opere edili ed impiantistiche previste necess opere inserire la motivazione:	arie al collegamento alle reti. Se non sono state predisposte
Livello di automazione per il controllo, la regolazione e la g termici (BACS), classe (min = classe B norma UNI EN 152 B	
Adozione di materiali ad elevata riflettenza solare per le co	perture: [x] Si [] No
Valore di riflettenza solare 0 > 0,65 per c	pperture piane
Valore di riflettenza solare 0 > 0.30 per c	pperture a falda
Se "no" riportare le ragioni tecnico-economiche che hanno portat	o al non utilizzo dei materiali riflettenti
Adozione di tecnologie di climatizzazione passiva per le co	perture [x] Si [] No
Se "no" riportare le ragioni tecnico-economiche che hanno portat	o al non utilizzo:
Sulla copertura della scuola è prevista la realizzazione	di una copertura verde.
Adozione di misuratori d'energia (Energy Meter) [x] Si	[] No
Se "sì" descrizione e caratteristiche principali	
Adozione di sistemi di contabilizzazione diretta del calore	[] Si [x] No
Adozione di sistemi di contabilizzazione diretta del freddo	[] Si [x] No
Adozione di sistemi di contabilizzazione diretta dell'ACS	[] Si [x] No
Se "no" riportare le ragioni tecnico-economiche che hanno portat stato utilizzato:	o al non utilizzo e definire quale sistema di contabilizzazione è
Utilizzazione di fonti di energia rinnovabili per la coper raffrescamento secondo i principi minimi di integrazion del decreto legislativo 3 marzo 2011, n. 28.	
Produzione di energia termica Indicare la % di copertura tramite il ricorso ad energia prod consumi previsti per:	otta da impianti alimentati da fonti rinnovabili, dei
Acqua Calda Sanitaria 71,0%	
Climatizzazione invernale, Acqua Calda Sanitaria, Climatiz	zazione estiva 73,8%

Indicare la potenza elettrica deg Superficie in pianta dell'edificio	•	fonti rinnovabili: 1.927,00 m²
Potenza Elettrica P=(1/K)*S	42,39 kW	
Descrizione e potenza degli imp	pianti alimentati da fonti i	rinnovabili:
Adozione sistemi di regolazione da impianti di climatizzazione in	•	eratura ambiente singoli locali o nelle zone termiche servite
Adozione sistemi di compensaz o nelle zone termiche servite da []Si [x]No		olazione automatica della temperatura ambiente singoli locali one invernale:
Se "no" documentare le ragioni tec	niche che hanno portato ali	la non utilizzazione

Valutazione sull'efficacia dei sistemi schermanti delle superfici vetrate sia esterni che interni presenti: (vedi allegati alla relazione tecnica)

Verifiche di cui alla lettera b) del punto 3.3.4 del decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005

Tutte le pareti opache verticali ad eccezione di quelle comprese nel quadrante nord-ovest/nord/nord-est: Valore di Massa superficiale

Elemento edilizio	M Sup [Kg/m ²]	Limite [Kg/m ²]	Verifica
Verifica non richiesta			

Valore del modulo della trasmittanza termica periodica YIE

Elemento edilizio	YIE [W/m ² K]	Limite [W/m ² K]	Verifica
Verifica non richiesta			

Verifiche di cui alla lettera c) del punto 3.3.4 del decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005

5 DATI RELATIVI AGLI IMPIANTI

5.1 Impianti termici

Impianto tecnologico destinato ai servizi di climatizzazione invernale e/o estiva e/o produzione di acqua calda sanitaria, indipendentemente dal vettore energetico utilizzato.

a) Descrizione impianto

Tipologia

Impianto idronico servito da generatori a pompa di calore acqua-acqua collegati ad un pozzo di presa ed uno di resa. I terminali di emissione sono pannelli radianti a soffitto per i locali scolastici, pannelli radianti a pavimento per la palestra e ventilconvettori per il refettorio.

Sistemi di generazione

Due pompe di calore acqua-acqua per la climatizzazione invernale ed estiva e pompe di calore aria-acqua per la produzione di acqua calda sanitaria.

Sistemi di termoregolazione

Presente

Sistemi di contabilizzazione dell'energia termica

Sono previsti contacalorie con contatore volumetrico della portata e sonde di temperatura sulle linee di mandata e ritorno del circuito primario

Rete di tubazione in acciaio nero o mult
Sistemi di distribuzione del vettore termico

Rete di tubazione in acciaio nero o multistrato con isolamento conforme al DPR 412/93

E' previsto un sistema di ventilazione meccanica con recupero di calore che garantisce in tutti i locali le portate richieste dalla norma UNI10339.

Sistemi di accumulo termico

Sistemi di ventilazione forzata

Sono presenti in centrale termica due accumuli caldi/freddi. Uno da 1500 litri e l'altro da 500 litri.

Sistemi di produzione dell'acqua calda sanitaria

Sistema a pompa di calore aria-acqua con serbatoio da 80 litri per la scuola e da 270 litri per la palestra.

Sistemi di distribuzione dell'acqua calda sanitaria

Tubazione in multistrato.

Trattamento di condizionamento chimico per l'acqua (norma UNI 8065)

Presente

Durezza dell'acqua di alimentazione dei generatori di calore

Filtro di sicurezza

Presente

b)	Specifiche	dei	generatori	di	energia
----	------------	-----	------------	----	---------

Installazione di un contatore del volume di acqua calda sanitaria	[] Si	[x] No		
Installazione di un contatore del volume di acqua di reintegro dell'im	pianto	[] Si	[x] No	

POMPA DI CALORE

Daikin - EWWH335VZXSA1 Daikin - EWWH335VZXSA1

Pompa di calore	X elettrica	- a gas	
Tipo di pompa di calore (ambiente est	erno/interno) Acqu	ıa di falda, fiume, mare o lago - Acqu	a
Lato esterno (specificare aria/acqua/s	uolo - sonde orizzontali/	suolo - sonde verticali/altro):	
Fluido lato utenze (specificare aria/ac	qua/altro) Acqua		

Potenza termica utile riscaldamento [kW]

Il dato è in funzione delle temperature di pozzo caldo e sorgente fredda

Ts,fredda	Tpozzo caldo						
[°C]	35,00	45,00	55,00	-	-	-	-
15,0	427,170	409,050	386,980	-	-	-	-

Potenza elettrica assorbita 1.500,00 W

Coefficiente di prestazione (COP)

Il dato è in funzione delle temperature di pozzo caldo e sorgente fredda

Ts,fredda	Tpozzo caldo						
[°C]	35,00	45,00	55,00	-	-	-	-
15,0	6,962	5,400	4,208	-	-	-	-

POMPA DI CALORE

Daikin - EWWQ180L-SS Daikin - EWWQ180L-SS

Pompa di calore								
	npa di calore (ar		,		lda, fiume, ma		equa	
	no (specificare a	·		zzontali/ suolo	- sonde vertica	ıli/altro):		
Fluido lato	utenze (specific	are aria/acqua/	/altro) Ac	qua				
	ermica utile risc nzione delle tempe			e fredda				
Ts,fredda	Tpozzo caldo							
[°C]	35,00	45,00	55,00	-	-	-	-	
15,0	246,430	233,550	218,920	-	•	-	-	
Potenza el	ettrica assorbita		1.5	500,00 W				
	te di prestazion nzione delle tempe		aldo e sorgent	e fredda				
Ts,fredda	Tpozzo caldo							
[°C]	35,00	45,00	55,00	-	-	-	-	
15,0	5,808	4,625	3,649	-	•	-	-	
POMPA DI CALORE ARISTON THERMO GROUP - NUOS EVO 80								
Pompa di calore X elettrica - a gas Tipo di pompa di calore (ambiente esterno/interno) Aria interna dipendente dal clima - Acqua								
	•		,				<u> </u>	
Lato esterno (specificare aria/acqua/suolo - sonde orizzontali/ suolo - sonde verticali/altro):								
Fluido lato utenze (specificare aria/acqua/altro) Acqua								
Potenza termica utile riscaldamento [kW] Il dato è in funzione delle temperature di pozzo caldo e sorgente fredda								
Ts,fredda	Tpozzo caldo							
[°C]	35,00	45,00	-	-	-	-	-	
7,0	0,572	0,572	-	-	-	-	-	
15,0	0,665	0,665	-	-	-	-	-	
20,0	0,680	0,680	-	-	•	-	-	
35,0	0,862	0,862	_	-	-	-	_	

•	I s,fredda I pozzo caldo						
[°C]	35,00	45,00	-	-	-	-	-
7,0	0,572	0,572	-	-	-	-	-
15,0	0,665	0,665	-	-	-	-	-
20,0	0,680	0,680	-	-	-	-	-
35,0	0,862	0,862	-	-	-	-	-

Potenza elettrica assorbita 0,00 W

Coefficiente di prestazione (COP) Il dato è in funzione delle temperature di pozzo caldo e sorgente fredda

Ts,fredda	Tpozzo caldo						
[°C]	35,00	45,00	-	-	-	-	-
7,0	2,720	2,720	-	-	-	•	-
15,0	2,660	2,660	-	-	-	•	-
20,0	2,720	2,720	-	-	-	•	-
35,0	3,450	3,450	-	-	-	-	-

POMPA DI CALORE

ARISTON THERMO GROUP - NUOS EVO 80								
Pompa di calore X elettrica - a gas								
Tipo di pompa di calore (ambiente esterno/interno) Aria interna dipendente dal clima - Acqua								
Lato esterr	no (specificare a	ria/acqua/suolo	- sonde oriz	zontali/ suolo -	- sonde vertica	li/altro):		
Fluido lato	utenze (specific	are aria/acqua/	/altro) Ac	qua				
	rmica utile risc nzione delle tempe			e fredda				
Ts,fredda [°C]	Tpozzo caldo 35,00	45,00	-	-	-	-	-	
7,0	0,572	0,572	-	-	-	-	-	
15,0	0,665	0,665	-	-	-	-	-	
20,0	0,680	0,680	-	-	-	-	-	
35,0	0,862	0,862	-	-	-	-	-	
Potenza elettrica assorbita O,00 W Coefficiente di prestazione (COP) Il dato è in funzione delle temperature di pozzo caldo e sorgente fredda								
Ts,fredda	Tpozzo caldo							
[°C]	35,00	45,00	-	-	-	-	-	
7,0	2,720	2,720	-	-	-	-	-	
15,0	2,660	2,660	-	-	-	-	-	
20,0	2,720	2,720	-	-	-	-	-	
35,0	3,450	3,450	-	-	-	-	-	
POMPA DI CALORE ARISTON THERMO GROUP - palestra								
Pompa di d		X	elettrica		a gas			
	npa di calore (ar		· -		dipendente d		qua	
	no (specificare a	·			- sonde vertica	li/altro):		
Fluido lato	utenze (specific	are aria/acqua/	/altro) Ac	qua				
Potenza termica utile riscaldamento [kW] Il dato è in funzione delle temperature di pozzo caldo e sorgente fredda								
Ts,fredda	Tpozzo caldo							
[°C]	35,00	45,00	-	-	-	-	-	
15,0	1,670	1,670	-	-	-	-	-	
20,0	1,670	1,670	-	-	-	-	-	
Potenza el	ettrica assorbita		0,0	0 W				

Coefficiente di prestazione (COP) Il dato è in funzione delle temperature di pozzo caldo e sorgente fredda

Ts,fredda Tpozzo caldo

[°C]	35,00	45,00	-	-	-	-	-
15,0	3,700	3,700	-	-	-	-	-
20,0	3,700	3,700	-	-	-	-	-

MACCHINA FRIGORIFERA

DAIKIN - EWWH335VZXSA1 DAIKIN - EWWH335VZXSA1

Tipo di pompa di calore (ambiente esterno/interno) Acqua di falda, fiume, mare o lago/Acqua

Temperatura dell'acqua in uscita: 7,00

Temperatura di ingresso dell'acqua al condensatore:30,00

Funzionamento pompa Energia elettrica

Funzionamento pompa Raffrescamento

POTENZE E PRESTAZIONI

per macchina frigorifera elettrica:

Fattore di carico	EER
100 %	5,67
75 %	6,99
50 %	8,61
25 %	9,37

Per macchina	frigorifera .	ad assorbimento

GUE -

Potenza nominale 370,2 kW

Potenza elettrica assorbita 0,00 W

MACCHINA FRIGORIFERA

DAIKIN - EWWQ180L-SS DAIKIN - EWWQ180L-SS

Tipo di pompa di calore (ambiente esterno/interno)

Acqua di falda, fiume, mare o lago/Acqua

Temperatura dell'acqua in uscita: 7,00

Temperatura di ingresso dell'acqua al condensatore:30,00

Funzionamento pompa Energia elettrica

Funzionamento pompa Raffrescamento

POTENZE E PRESTAZIONI

per macchina frigorifera elettrica:

Fattore di carico	EER
100 %	4,76
75 %	5,58
50 %	6,86
25 %	8,03

Per macchina frigorifera ad assorbimento

GUE -

Potenza nominale 203,9 kW

Potenza elettrica assorbita 0,00 W

Per gli impianti termici con o senza produzione di acqua calda sanitaria, che utilizzano, in tutto o in parte, macchine diverse da quelle sopra descritte, le prestazioni di dette macchine sono fornite utilizzando le caratteristiche fisiche della specifica apparecchiatura, e applicando, ove esistenti, le vigenti norme tecniche.

c) Specifiche relative ai sistemi di regolazione dell'impianto termico

Tipo di conduzione inverna	ale prevista:				
Continua con attenuazion	ne notturna				
X Intermittente					
Tipo di conduzione estiva p	orevista:				
Continua con attenuazion	ne notturna				
X Intermittente					
Sistema di gestione dell'impi	anto termico				
Quadro comandi di central	e				
Sistema di regolazione clima	atica in centrale termica (so	olo per impianti centraliza	zati)		
Centralina climatica Pre	esente				
Numero dei livelli di program	mazione della temperatur	a nelle 24 ore conti	nua		
Regolatori climatici e disposi singole zone o unità immobil				-	
Denominazione		Regolazione	N	Descrizione	Livelli
U.I.1-B. Scuola primaria	SIH1 Idronico	Per singolo ambiente + climatica	1	Modulazion e della temperatura di mandata	conti nua
U.I.1-Refettorio	SIH1 Idronico	Per singolo ambiente + climatica	1	Modulazion e della temperatura di mandata	conti nua
U.I.1-Palestra	SIH1 Idronico	Per singolo ambiente + climatica	1	Modulazion e della temperatura di mandata	conti nua
N : numero apparecchi Livelli : Numero di livelli di progr	ammazione nelle 24 ore				
d) Dispositivi per la conta centralizzati)	bilizzazione del calore/fr	eddo nelle singole unit	à immobil	iari (solo per impi	ianti
Per Climatizzazione invern	ale				
Numero di apparecchi	0				
Descrizione sintetica disposi	tivo				
Per Acqua Calda Sanitaria					
Numero di apparecchi	0				
Descrizione sintetica disposi	tivo				
Per Climatizzazione estiva					

Numero di apparecciii 0				
Descrizione sintetica dispositivo				
e) Terminali di erogazione dell'	energia termica			
Elenco dei terminali di erogazione	dell'unità immobiliare			
Denominazione		N	Tipologia	P [W]
U.I.1-B. Scuola primaria	SIH1 Idronico		Pannelli annegati a soffitto	35.237
U.I.1-Refettorio	SIH1 Idronico		Ventilconvettori	98.209
U.I.1-Palestra	SIH1 Idronico		Pannelli annegati a pavimento	35.237
N Numero di apparecchi P Potenza installata				
f) Condotti di evacuazione dei	prodotti della combus	stione		
Descrizione e caratteristiche princ	•			
Non previsti, in quanto i genera	tori sono pompe di ca	lore elet	triche.	
g) Sistemi di trattamento del	l'acqua (tipo di trattan	nento)		
Descrizione e caratteristiche princ	ipali			
Trattamento mediante addolcito	re, dosatore polisosf	ati e trati	amento antilegionella	
h) Specifiche dell'isolamento	termico della rete di	distribu	zione	
Tipologia, conduttività termica, spe	essore (vedi allegati alla	a relazior	ne tecnica)	
i) Schemi funzionali degli i In allegato sono inseriti schemi uni	-	o con spe	ecificato	
Posizionamento e la potenze d	dei terminali di erogazio	ne – Alle	egato	
Posizionamento e tipo dei gen	eratori – Allegato			
Posizionamento e tipo degli el	ementi di distribuzione	– Allegat	0	
Posizionamento e tipo degli el	ementi di controllo – Al	legato		
Posizionamento e tipo degli el	ementi di sicurezza – A	llegato		
5.2 Impianti fotovoltaici				
Nella modellazione dell'edificio so Descrizione con caratteristiche teo	•			
5.3 Impianti solari termici				
Nella modellazione dell'edificio so	·			
Descrizione con caratteristiche tec	niche e schemi funzion	ali (vedi a	allegati alla relazione tecnica)	
5.4 Impianti di illuminazione				
Nella modellazione dell'edificio so Descrizione con caratteristiche tec	·			
5.5 Altri impianti				
Altri impianti dell'edificio [X]	Si [] No			
Descrizione con caratteristiche tec	niche e schemi funzion	ali		

Livello minimo di efficienza dei motori elettrici per ascensori e scale mobili	IE3
--	-----

6 PRINCIPALI RISULTATI DEI CALCOLI

Si dichiara che l'edificio oggetto della presente relazione può essere definito "edificio ad energia quasi zero" in quanto sono contemporaneamente rispettati

- tutti i requisiti previsti dalla lettera b), del comma 2, del paragrafo 3.3 del decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005, secondo i valori vigenti dal 1° gennaio 2019 per gli edifici pubblici e dal 1° gennaio 2021 per tutti gli altri edifici;
- gli obblighi di integrazione delle fonti rinnovabili nel rispetto dei principi minimi di cui all'allegato 3, paragrafo 1, lettera c), del decreto legislativo 3 marzo 2011, n.28.

g) Involucro edilizio e ricambi d'aria

Trasmittanza termica degli elementi divisori tra alloggi o unità immobiliari confinanti; confronto con i valori limite: (vedi allegati alla relazione tecnica).

Verifica termoigrometrica: (vedi allegati alla relazione tecnica).

Numero di ricambi d'aria (media nelle 24 ore): (vedi allegati alla relazione tecnica).

Portata d'aria di ricambio solo nei casi di ventilazione meccanica controllata: (vedi allegati alla relazione tecnica). Portata dell'aria circolante attraverso apparecchiature di recupero del calore disperso: (vedi allegati alla relazione tecnica).

Rendimento termico delle apparecchiature di recupero del calore disperso: (vedi allegati alla relazione tecnica).

h) Indici di prestazione energetica per la climatizzazione invernale ed estiva, per la produzione di acqua calda sanitaria, per la ventilazione e l'illuminazione

Determinazione dei seguenti indici di prestazione energetica, espressi in kWh/m² anno, così come definiti al paragrafo 3.3 dell'Allegato 1 del decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005, rendimenti e parametri che ne caratterizzano l'efficienza energetica.

Verifica coefficiente medio globale di scambio termico per trasmissione

Unità immobiliare	H'T [W/(m ² K)]	Limite	Verifica
Scuola Inveruno	0,227	0,55	SI

H'T: Coefficiente medio globale di scambio termico per trasmissione per unità di superficie disperdente (Tabella 10 appendice A)

Verifica area solare equivalente estiva dei componenti finestrati

Unità immobiliare	Asol,est/Asup,utile	Limite	Verifica	
Scuola Inveruno	0,030	0,04	SI	l

Verifica Indice di prestazione termica utile

Indice di prestazione termica utile per la climatizzazione invernale EPH,nd	106,21	kWh/m ²	
Indice di prestazione termica utile per la climatizzazione invernale calcolato			
nell'edificio di riferimento EPH,nd,limite:	123,10	kWh/m ²	
Verifica: Si			
Indice di prestazione termica utile per la climatizzazione estiva EPC,nd	3,62	kWh/m ²	
Indice di prestazione termica utile per la climatizzazione estiva calcolato			
nell'edificio di riferimento EPC,nd,limite:	4,61	kWh/m²	
Vorifica. C:			

Indice della prestazione energetica globale dell'edificio, espresso in energia		
primaria non rinnovabile EPgl,nr	49,53	kWh/m²
Indice della prestazione energetica globale dell'edificio EPgl,tot	119,87	kWh/m²
Indice di prestazione energetica globale dell'edificio calcolato nell'edificio di riferimento EP _{gl,tot,limite} :	206,64	kWh/m²
Verifica: Si		
Verifica Efficienza media stagionale		
Efficienza media stagionale dell'impianto di riscaldamento ηΗ	1,842	
Efficienza media stagionale dell'impianto di riscaldamento calcolato		
nell'edificio di riferimento ηΗ,limite	1,109	
Verifica: Si		
Efficienza media stagionale dell'impianto di produzione di ACS ηW:	0,704	
Efficienza media stagionale dell'impianto di riscaldamento calcolato		
nell'edificio di riferimento ηW,limite	0,453	
Verifica: Si		
Efficienza media stagionale dell'impianto di raffrescamento ηC	0,909	
Efficienza media stagionale dell'impianto di raffrescamento calcolato		
nell'edificio di riferimento ηH,limite	0,292	
Verifica: Si		
Tipo collettore - Tipo installazione -		
Descrizione tipo installazione (se altro)		
Tipo supporto -		
Descrizione tipo supporto (se altro)		
Inclinazione -°		
Orientamento -		
Capacità accumulo 0		
Impianto integrazione (specificare tipo e alimentazione)		
Percentuale conertura fabbisogno annuo 00%		
U,U 76		
j) Impianti fotovoltaici		
j) Impianti fotovoltaici Connessione impianto: Grid connected		
	pari a 360 W	
Connessione impianto: Grid connected	pari a 360 W	
Connessione impianto: Grid connected Tipo moduli Silicio monocristallino con potenza del singolo modulo	pari a 360 W	
Connessione impianto: Grid connected Tipo moduli Silicio monocristallino con potenza del singolo modulo Tipo installazione Parzialmente integrati	pari a 360 W	
Connessione impianto: Grid connected Tipo moduli Silicio monocristallino con potenza del singolo modulo Tipo installazione Parzialmente integrati Descrizione tipo installazione (se altro)	pari a 360 W	

Orientamento 4	.5	
Potenza installata	49,73 kW	
Percentuale copertu	ıra fabbisogno annuo	44,15 %

e) Consuntivo energia

Energia prodotta in sito

Vettore energetico	Udm	Qdel
Energia elettrica da solare fotovoltaico	Н	5.573,88
Energia elettrica da solare fotovoltaico	W	537,70
Energia elettrica da solare fotovoltaico	С	6.806,04
Energia elettrica da solare fotovoltaico	L	15.482,23
Energia elettrica da solare fotovoltaico	V	34.084,62
Energia elettrica da solare fotovoltaico	Т	284,05
Energia termica da solare termico	н	0,00
Energia termica da solare termico	W	0,00
Energia termica da solare termico	С	0,00
Energia termica da solare termico	L	0,00
Energia termica da solare termico	V	0,00
Energia termica da solare termico	Т	284,05

Energia consegnata dall'esterno

Vettore energetico	Udm	Qdel
Energia elettrica da rete	н	23.501,69
Energia elettrica da rete	W	580,78
Energia elettrica da rete	С	2.338,42
Energia elettrica da rete	L	16.453,17
Energia elettrica da rete	V	36.223,14
Energia elettrica da rete	Т	301,87

Energia esportata

Vettore energetico	Udm	Qdel
Energia elettrica da rete	н	0,00
Energia elettrica da rete	W	0,00
Energia elettrica da rete	С	0,00
Energia elettrica da rete	L	0,00
Energia elettrica da rete	V	0,00
Energia elettrica da rete	Т	0,00

Energia primaria

Indice di prestazione rinnovabile diviso per servizio

Servizio	EPren [kWh/m²]
Н	43,01
W	0,89
С	2,53
L	7,43
V	16,35

Т	0.14

Indice di prestazione non rinnovabile diviso per servizio

Servizio	EPnren [kWh/m²]
Н	14,66
W	0,36
С	1,46
L	10,26
V	22,60
Т	0,19

Indice di prestazione globale diviso per servizio

Servizio	EPnren [kWh/m²]
Н	57,67
W	1,25
С	3,99
L	17,69
V	38,95
Т	0,32

f) Valutazione della fattibilità tecnica, ambientale ed economica per l'inserimento di sistemi ad alta efficienza

Vedi allegati alla relazione tecnica

7 ELEMENTI SPECIFICI CHE MOTIVANO EVENTUALI DEROGHE A NORME FISSATE DALLA NORMATIVA VIGENTE

8 DOCUMENTAZIONE ALLEGATA Piante di ciascun piano degli edifici con orientamento e indicazione d'uso prevalente dei singoli locali e definizione degli elementi costruttivi. Prospetti e sezioni degli edifici con evidenziazione dei sistemi fissi di protezione solare e definizione degli elementi costruttivi. Elaborati grafici relativi ad eventuali sistemi solari passivi specificatamente progettati per favorire lo sfruttamento degli apporti solari. Schemi funzionali degli impianti contenenti gli elementi di cui all'analoga voce del paragrafo 'Dati relativi agli impianti punto 5.1 lettera i' e dei punti 5.2, 5.3, 5.4, 5.5 Tabelle con indicazione delle caratteristiche termiche, termo igrometriche e della massa efficace dei componenti opachi dell'involucro edilizio con verifica dell'assenza di rischio di formazione di muffe e di condensazioni interstiziali. Tabelle con indicazione delle caratteristiche termiche, termo igrometriche e della massa efficace della loro permeabilità all'aria. Schede con indicazione della valutazione della fattibilità tecnica, ambientale ed economica per l'inserimento di sistemi alternativi ad alta efficienza. Schede con indicazione della valutazione della fattibilità tecnica, ambientale ed economica per l'inserimento Altri eventuali allegati non obbligatori: 9 DICHIARAZIONE DI RISPONDENZA Il sottoscritto Ing. Paolo Oliaro, iscritto a Ordine degli Ingegneri di Milano, nº 24252, essendo a conoscenza delle sanzioni previste dall'articolo 15, commi 1 e 2, del decreto legislativo 192/2005 **DICHIARA** sotto la propria personale responsabilità che: a) il progetto relativo alle opere di cui sopra è rispondente alle prescrizioni contenute dal decreto legislativo 192/2005 nonché dal decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005; b) il progetto relativo alle opere di cui sopra rispetta gli obblighi di integrazione delle fonti rinnovabili secondo i principi minimi e le decorrenze di cui all'allegato 3, paragrafo 1, lettera c), del decreto legislativo 3 marzo 2011, n.28: c) i dati e le informazioni contenuti nella relazione tecnica sono conformi a quanto contenuto o desumibile dagli elaborati progettuali Data Firma

17/01/2020

PROGETTO DELL'ISOLAMENTO

Il calcolo di progetto per l'isolamento dell'involucro dell'edificio ed il conseguente calcolo del carico termico di progetto è condotto in conformità alla UNI EN 12381 – 2006.

COEFFICIENTI DI DISPERSIONE

Di seguito si riportano gli elementi che costituiscono l'involucro del sistema edificio/impianto con i rispettivi valori di trasmittanza termica U. U' rappresenta la trasmittanza di un elemento opaco valutata comprendendo l'influenza degli eventuali ponti termici associati. A ciascuna voce viene associato il limite da normativa e l'esito della relativa verifica.

Strutture verticali opache	Trasmittanza U	Trasmittanza corretta U'	Trasmittanza limite Ulimite	Verifica
	W/(m ² K)	W/(m ² K)	W/(m ² K)	
Inveruno_CV01a (PA0015)	0,195	0,195	0,260	SI
nveruno_CV01b (PA0007)	0,144	0,144	0,260	SI
nveruno_CV01c (PA0012)	0,143	0,143	0,260	SI
Inveruno_CV01d (PA0023)	0,198	0,198	0,260	SI
Inveruno_CV02a (PA0008)	0,206	0,206	0,260	SI
Inveruno_CV03a (PA0032)	0,153	0,153	0,260	SI
Inveruno_CV03b (PA0029)	0,158	0,158	0,260	SI
Inveruno_CV03c (PA0031)	0,184	0,184	0,260	SI
Inveruno_CV04b (PA0018)	0,241	0,241	0,260	SI
Strutture orizzontali opache di pavimento	Trasmittanza U	Trasmittanza corretta U'	Trasmittanza limite Ulimite	Verifica
Inveruno_CO01 (PV0011)	W/(m ² K) 0,043	W/(m ² K) 0,043	W/(m ² K) 0,260	SI
Inveruno_CO01 (PV0011) Inveruno_CO05 (PV0012)	0,043	0,043	0,260	SI
Inveruno_CO05 (PV0012)	0,043	0,043	0,260	51
Strutture orizzontali opache di copertura	Trasmittanza U	Trasmittanza corretta U'	Trasmittanza limite Ulimite	Verifica
	W/(m ² K)	W/(m ² K)	W/(m ² K)	
Inveruno_COP01a (CO0004)	0,108	0,108	0,220	SI
Inveruno_COP02a (CO0003)	0,132	0,132	0,220	SI
Elementi trasparenti	Trasmittanza U	Trasmittanza limite Ulimite	Verifica	
-	W/(m ² K)	W/(m ² K)		
Serramenti	Trasmittanza U	Trasmittanza limite Ulimite	Verifica	
Verifica non richiesta	W/(m ² K)	W/(m ² K)		
Partizioni interne verticali ed orizzontali	Trasmittanza U	Trasmittanza corretta U'	Trasmittanza limite Ulimite	Verifica
Verifica non richiesta	W/(m ² K)	W/(m ² K)	W/(m ² K)	
Strutture verso il terreno	Trasmittanza U	Trasmittanza limite Ulimite	Verifica	
Verifica non richiesta	W/(m ² K)	W/(m ² K)		
verillea from fromtesta				
Ponti termici	Trasmittanza lineica ψi W/(mK)	Trasmittanza lineica ψοί W/(mK)	Trasmittanza lineica ψe W/(mK)	
Verifica non richiesta		. ,	. \ /	

DISPERSIONI PER TRASMISSIONE

I coefficienti di maggiorazione percentuale a seconda dell'esposizione delle strutture verticali sono valutati con riferimento alla norma UNI EN 12831 - 2006, paragrafo 6 dell'appendice NA (prospetto NA.3 a).

B. Scuola primaria - 4. 005-8 Aule dx PT - Δ9progetto = 25,0 °C

Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	ΦТ
	dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W]
Inveruno_CV01b	Esterno	SW	1,05	74,18	0,144	10,65	1,00	279,58
Inveruno_CV02a	Esterno	NW	1,15	108,76	0,206	22,42	1,00	644,88

TOTALE B. Scuola primaria - 4. 005-8 Aule dx PT 924,46

B. Scuola primaria - 12. 029 Infermeria - Δ9progetto = 25,0 °C

Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	ΦТ
	dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W]
Inveruno_CV01c	Esterno	SE	1,10	8,33	0,143	1,19	1,00	32,84
							1	

TOTALE B. Scuola primaria - 12. 029 Infermeria 32,84

B. Scuola primaria - 8. 018-53-30-54 Connettivo PT - Δ9progetto = 25,0 °C

Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	ΦТ
	dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W]
Inveruno_CV01a	Esterno	SW	1,05	74,88	0,195	14,58	1,00	382,99
Inveruno_CV01a	Esterno	NE	1,20	81,19	0,195	15,81	1,00	474,58
Inveruno_CV01a	Esterno	NW	1,15	66,15	0,195	12,88	1,00	370,56
Inveruno_CV04b	Esterno	SW	1,05	19,09	0,241	4,61	1,00	121,04
Inveruno_CV04b	Esterno	NE	1,20	19,28	0,241	4,65	1,00	139,71
Inveruno_CV04b	Esterno	NW	1,15	57,36	0,241	13,85	1,00	398,32
Inveruno_CV04b	Esterno	SE	1,10	59,08	0,241	14,26	1,00	392,43
ED1-2_PT_170x260_con tenda	Esterno	NE	1,20	39,78	1,400	55,69	1,00	1.671,51
ED1-2_PT_170x260_con tenda	Esterno	SW	1,05	35,36	1,400	49,50	1,00	1.300,06
ED1-2_PT_170x260_con tenda	Esterno	SE	1,10	17,68	1,400	24,75	1,00	680,99
ED1-2_170x260	Esterno	SE	1,10	13,26	1,400	18,56	1,00	510,74
ED1-2_170x260	Esterno	NW	1,15	30,94	1,400	43,32	1,00	1.245,89

TOTALE B. Scuola primaria - 8. 018-53-30-54 Connettivo PT 7.688,81

B. Scuola primaria - 19. 039-42 Aule destra P1 - Δ9progetto = 25,0 °C

Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	ФΤ
	dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W]
Inveruno_CV01b	Esterno	SW	1,05	75,33	0,144	10,81	1,00	283,91

TOTALE B. Scuola primaria - 19. 039-42 Aule destra P1 283,91

B. Scuola primaria - 25. 056-57 Scale P1 - Δ9progetto = 25,0 °C

Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	ΦТ
	dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W]
Inveruno_CV01b	Esterno	SE	1,10	8,56	0,144	1,23	1,00	33,80

TOTALE B. Scuola primaria - 25. 056-57 Scale P1 33,80

<u>B. Scuola primaria - 3. 001-4 Aule sinistra PT</u> - Δ 9progetto = <u>25,0 °C</u>

Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	ΦТ
	dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W]
Inveruno_CV01b	Esterno	NE	1,20	74,19	0,144	10,65	1,00	319,56
Inveruno_CV02a	Esterno	NW	1,15	106,71	0,206	22,00	1,00	632,72
ED1-2_PT_170x260_con tenda	Esterno	SW	1,05	35,36	1,400	49,50	1,00	1.300,06
ED1-2_PT_170x260_con tenda	Esterno	NE	1,20	35,36	1,400	49,50	1,00	1.485,79

TOTALE B. Scuola primaria - 3. 001-4 Aule sinistra PT 3.738,14

B. Scuola primaria - 11-26. cavedi + ascensore - Δ9progetto = 25,0 °C

Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	ФΤ
	dispersione	[-]	[%]	[m ²]	[W/(m ² K)]	[W/K]	[-]	[W]
nveruno_CV01d	Esterno	SE	1,10	7,43	o [W/(mK)] 0,198	1,47	1,00	40,3
nveruno_CV01d	Esterno	SE	1,10	7,49	0,198	1,52	1,00	41,7
OTALE B. Scuola primaria - 11-26. cavedi +	ascensore			· · · · · · · · · · · · · · · · · · ·	•			82,
3. Scuola primaria - 17. 017-022 WC PT - Δ9								02,
Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	ΦТ
	dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W]
nveruno_CV01c	Esterno	NE	1,20	38,25	0,143	5,48	1,00	164,
nveruno_CV01c	Esterno	SW	1,05	27,14	0,143	3,89	1,00	102,
nveruno_CV01c	Esterno	NE	1,20	27,44	0,143	3,93	1,00	118,
D1-2_170x85	Esterno	NE	1,20	2,89	1,400	4,05	1,00	121,
D1-2_170x85	Esterno	SW	1,05	2,89	1,400	4,05	1,00	106,
OTALE B. Scuola primaria - 17. 017-022 WC	PT							612
3. Scuola primaria - 9. 056-57 Scale PT - Δ8	progetto = 25,0 °C							
Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	ΦТ
2.5mono dioporatino					[W/(m ² K)]			
	dispersione	[-]	[%]	[m ²]	o [W/(mK)]	[W/K]	[-]	[W]
overuno_CV01b	Esterno	SE	1,10	111,22	0,144	15,96	1,00	439
OTALE B. Scuola primaria - 9. 056-57 Scale	<u>e PT</u>							439
3. Scuola primaria - 23. 050-55 Connettivo -	<u> FF P1</u> - Δ9progetto = <u>2</u>	<u>5,0 °C</u>						
Flemento disperdente	Verso di	Or	۵	Anetta	Пош	Hiv	htry	фΤ
Elemento disperdente	Verso di	Or	е	Anetta	U ο ψ [W/(m ² K)]	Hix	btrx	ΦТ
Elemento disperdente	Verso di dispersione	Or [-]	e [%]	Anetta [m²]	U ο ψ [W/(m ² K)] ο [W/(mK)]	Hix [W/K]	btrx [-]	ΦT [W]
·					[W/(m ² K)]			[W]
nveruno_CV01a	dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)] 0,195 0,195	[W/K]	[-]	[W]
Elemento disperdente nveruno_CV01a nveruno_CV01a nveruno_CV01a	dispersione Esterno	[-]	[%] 1,15	[m ²] 63,41	[W/(m ² K)] o [W/(mK)] 0,195	[W/K] 12,35	[-] 1,00	
nveruno_CV01a nveruno_CV01a nveruno_CV01a	dispersione Esterno Esterno	[-] NW NE	[%] 1,15 1,20	[m ²] 63,41 81,49	[W/(m ² K)] o [W/(mK)] 0,195 0,195	[W/K] 12,35 15,87	[-] 1,00 1,00	[W] 355, 476,
nveruno_CV01a nveruno_CV01a nveruno_CV01a ED1-2_PT_170x260_con tenda	dispersione Esterno Esterno Esterno	[-] NW NE SW	[%] 1,15 1,20 1,05	[m ²] 63,41 81,49 55,36	[W/(m ² K)] o [W/(mK)] 0,195 0,195 0,195	[W/K] 12,35 15,87 10,78	[-] 1,00 1,00 1,00	[W] 355, 476, 283, 1.671,
nveruno_CV01a nveruno_CV01a nveruno_CV01a D1-2_PT_170x260_con tenda D1-2_PT_170x260_con tenda	dispersione Esterno Esterno Esterno Esterno	[-] NW NE SW NE	[%] 1,15 1,20 1,05 1,20	[m ²] 63,41 81,49 55,36 39,78	[W/(m ² K)] o [W/(mK)] 0,195 0,195 0,195 1,400	[W/K] 12,35 15,87 10,78 55,69	[-] 1,00 1,00 1,00 1,00	[W] 355, 476, 283, 1.671, 975,
nveruno_CV01a nveruno_CV01a nveruno_CV01a nveruno_CV01a ED1-2_PT_170x260_con tenda ED1-2_PT_170x260_con tenda ED1-2_PT_170x260_con tenda	dispersione Esterno Esterno Esterno Esterno Esterno Esterno Esterno	[-] NW NE SW NE SW	[%] 1,15 1,20 1,05 1,20 1,05	[m ²] 63,41 81,49 55,36 39,78 26,52	[W/(m²K)] o [W/(mK)] 0,195 0,195 0,195 1,400	[W/K] 12,35 15,87 10,78 55,69 37,13	[-] 1,00 1,00 1,00 1,00 1,00	[W] 355 476 283 1.671 975 1.245
nveruno_CV01a nveruno_CV01a nveruno_CV01a nveruno_CV01a D1-2_PT_170x260_con tenda D1-2_PT_170x260_con tenda D1-2_PT_170x260_con tenda D1-2_PT_170x260_con tenda D1-2_PT_170x260_con tenda	dispersione Esterno Esterno Esterno Esterno Esterno Esterno Esterno esterno nettivo + FF P1	[-] NW NE SW NE SW NW	[%] 1,15 1,20 1,05 1,20 1,05	[m ²] 63,41 81,49 55,36 39,78 26,52	[W/(m²K)] o [W/(mK)] 0,195 0,195 0,195 1,400	[W/K] 12,35 15,87 10,78 55,69 37,13	[-] 1,00 1,00 1,00 1,00 1,00	[W] 355 476 283 1.671 975 1.245
nveruno_CV01a nveruno_CV01a nveruno_CV01a D1-2_PT_170x260_con tenda D1-2_PT_170x260_con tenda D1-2_PT_170x260_con tenda OTALE B. Scuola primaria - 23. 050-55 Con	dispersione Esterno Esterno Esterno Esterno Esterno Esterno Esterno esterno nettivo + FF P1	[-] NW NE SW NE SW NW	[%] 1,15 1,20 1,05 1,20 1,05	[m ²] 63,41 81,49 55,36 39,78 26,52	[W/(m²K)] o [W/(mK)] 0,195 0,195 0,195 1,400	[W/K] 12,35 15,87 10,78 55,69 37,13	[-] 1,00 1,00 1,00 1,00 1,00	[W] 355 476 283 1.671 975 1.245
overuno_CV01a overuno_CV01a overuno_CV01a overuno_CV01a D1-2_PT_170x260_con tenda D1-2_PT_170x260_con tenda D1-2_PT_170x260_con tenda OTALE B. Scuola primaria - 23. 050-55 Con B. Scuola primaria - 18. 036-38 Aule sinistra	dispersione Esterno Verso di	[-] NW NE SW NE SW NW Or	[%] 1,15 1,20 1,05 1,20 1,05 1,15	[m ²] 63,41 81,49 55,36 39,78 26,52 30,94 Anetta	[W/(m²K)] o [W/(mK)] 0,195 0,195 0,195 1,400 1,400 1,400	[W/K] 12,35 15,87 10,78 55,69 37,13 43,32	[-] 1,00 1,00 1,00 1,00 1,00 1,00 1,00 btrx	[W] 355, 476, 283, 1,671, 975, 1,245, 5.007
nveruno_CV01a nveruno_CV01a nveruno_CV01a nveruno_CV01a ED1-2_PT_170x260_con tenda ED1-2_PT_170x260_con tenda ED1-2_PT_170x260_con tenda ED1-2_PT_170x260_con tenda EOTALE B. Scuola primaria - 23. 050-55 Con B. Scuola primaria - 18. 036-38 Aule sinistra Elemento disperdente	dispersione Esterno Esterno Esterno Esterno Esterno Esterno Esterno Marchine P1 AP1 - A9progetto = 25,0 Verso di dispersione	[-] NW NE SW NE SW NW Or [-]	[%] 1,15 1,20 1,05 1,20 1,05 1,15 e [%]	[m ²] 63,41 81,49 55,36 39,78 26,52 30,94 Anetta [m ²]	[W/(m²K)] o [W/(mK)] 0,195 0,195 0,195 1,400 1,400 1,400 U o ψ [W/(m²K)] o [W/(mK)]	[W/K] 12,35 15,87 10,78 55,69 37,13 43,32 Hix [W/K]	[-] 1,00 1,00 1,00 1,00 1,00 1,00 1,00 btrx [-]	[W] 355. 476. 283. 1.671, 975. 1.245. 5.007
nveruno_CV01a nveruno_CV01a nveruno_CV01a nveruno_CV01a D1-2_PT_170x260_con tenda D1-2_PT_170x260_con tenda D1-2_PT_170x260_con tenda D1-2_PT_170x260_con tenda OTALE B. Scuola primaria - 23. 050-55 Con B. Scuola primaria - 18. 036-38 Aule sinistra Elemento disperdente	dispersione Esterno Esterno Esterno Esterno Esterno Esterno Esterno Esterno Esterno Verso di dispersione Terreno	[-] NW NE SW NE SW NW Or [-]	[%] 1,15 1,20 1,05 1,20 1,05 1,15 e [%] 1,00	[m ²] 63,41 81,49 55,36 39,78 26,52 30,94 Anetta [m ²] 1.708,89	[W/(m²K)] o [W/(mK)] 0,195 0,195 0,195 1,400 1,400 1,400 U o ψ [W/(m²K)] o [W/(mK)]	[W/K] 12,35 15,87 10,78 55,69 37,13 43,32 Hix [W/K] 73,47	[-] 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	[W] 355. 476. 283. 1.671, 975. 1.245. 5.007
nveruno_CV01a nveruno_CV01a nveruno_CV01a nveruno_CV01a ED1-2_PT_170x260_con tenda ED1-2_PT_170x260_con tenda ED1-2_PT_170x260_con tenda ED1-2_PT_170x260_con tenda EOTALE B. Scuola primaria - 23. 050-55 Con B. Scuola primaria - 18. 036-38 Aule sinistra Elemento disperdente	dispersione Esterno Esterno Esterno Esterno Esterno Esterno Esterno Esterno Esterno Terreno	[-] NW NE SW NE SW NW Or [-] -	[%] 1,15 1,20 1,05 1,20 1,05 1,15 e [%] 1,00 1,00	[m ²] 63,41 81,49 55,36 39,78 26,52 30,94 Anetta [m ²] 1.708,89 631,57	[W/(m ² K)] o [W/(mK)] 0,195 0,195 0,195 1,400 1,400 1,400 U o ψ [W/(m ² K)] o [W/(mK)] 0,043 0,043	[W/K] 12,35 15,87 10,78 55,69 37,13 43,32 Hix [W/K] 73,47 27,28	[-] 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	[W] 355. 476. 283. 1.671, 975. 1.245. 5.007
nveruno_CV01a nveruno_CV01a nveruno_CV01a nveruno_CV01a ED1-2_PT_170x260_con tenda ED1-2_PT_170x260_con tenda ED1-2_PT_170x260_con tenda EOTALE B. Scuola primaria - 23. 050-55 Con B. Scuola primaria - 18. 036-38 Aule sinistra Elemento disperdente nveruno_C001 nveruno_C005 nveruno_C0P02a	dispersione Esterno Esterno Esterno Esterno Esterno Esterno Esterno Esterno Esterno Terreno Terreno Esterno Esterno	[-] NW NE SW NE SW NW Or [-]	[%] 1,15 1,20 1,05 1,20 1,05 1,15 e [%] 1,00 1,00 1,00	[m ²] 63,41 81,49 55,36 39,78 26,52 30,94 Anetta [m ²] 1.708,89 631,57 413,26	[W/(m²K)] o [W/(mK)] 0,195 0,195 0,195 1,400 1,400 1,400 U ο ψ [W/(m²K)] o [W/(mK)] 0,043 0,043 0,132	[W/K] 12,35 15,87 10,78 55,69 37,13 43,32 Hix [W/K] 73,47 27,28 54,75	[-] 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	[W] 355. 476. 283. 1.671, 975. 1.245. 5.007 ФТ [W] 935. 347, 1.369,
nveruno_CV01a nveruno_CV01a nveruno_CV01a nveruno_CV01a iD1-2_PT_170x260_con tenda iD1-2_PT_170x260_con tenda iD1-2_PT_170x260_con tenda iD1-2_PT_170x260_con tenda iD1-2_PT_170x260_con tenda iD1-2_PT_180x260_con tenda iD1-2_PT_180x260_co	dispersione Esterno Esterno Esterno Esterno Esterno Esterno Esterno Esterno Esterno Terreno Terreno Esterno	[-] NW NE SW NE SW NW Or [-]	[%] 1,15 1,20 1,05 1,20 1,05 1,15 1,15 e [%] 1,00 1,00 1,00 1,00	[m ²] 63,41 81,49 55,36 39,78 26,52 30,94 Anetta [m ²] 1.708,89 631,57 413,26 1.483,28	[W/(m²K)] o [W/(mK)] 0,195 0,195 0,195 1,400 1,400 1,400 U ο ψ [W/(m²K)] o [W/(mK)] 0,043 0,043 0,132 0,108	[W/K] 12,35 15,87 10,78 55,69 37,13 43,32 Hix [W/K] 73,47 27,28 54,75 160,81	[-] 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	[W] 355, 476, 283, 1.671, 975, 1.245, 5.007 ФТ [W] 935, 347, 1.369, 4.021,
nveruno_CV01a nveruno_CV01a nveruno_CV01a nveruno_CV01a D1-2_PT_170x260_con tenda D1-2_PT_170x26	dispersione Esterno Esterno Esterno Esterno Esterno Esterno Esterno Esterno Esterno Terreno Terreno Esterno	[-] NW NE SW NE SW NW Or [-] NE	[%] 1,15 1,20 1,05 1,20 1,05 1,15 1,10 1,00 1,00 1,00 1,20	[m²] 63,41 81,49 55,36 39,78 26,52 30,94 Anetta [m²] 1.708,89 631,57 413,26 1.483,28 75,36	[W/(m²K)] o [W/(mK)] 0,195 0,195 0,195 1,400 1,400 1,400 U ο ψ [W/(m²K)] o [W/(mK)] 0,043 0,132 0,108 0,144	[W/K] 12,35 15,87 10,78 55,69 37,13 43,32 Hix [W/K] 73,47 27,28 54,75 160,81 10,82	[-] 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	[W] 355, 476, 283, 1.671, 975, 1.245, 5.007 ФТ [W] 935, 347, 1.369, 4.021, 324,
nveruno_CV01a nveruno_CV01a nveruno_CV01a nveruno_CV01a D1-2_PT_170x260_con tenda D1-2_PT_170x260_con tenda D1-2_PT_170x260_con tenda OTALE B. Scuola primaria - 23. 050-55 Con B. Scuola primaria - 18. 036-38 Aule sinistra Elemento disperdente nveruno_C001 nveruno_C005 nveruno_C0P02a nveruno_CV01b D1-2_P1_170x260_con scherm	dispersione Esterno Esterno Esterno Esterno Esterno Esterno Esterno Esterno Esterno Terreno Terreno Esterno	[-] NW NE SW NE SW NW Or [-] NE SW	[%] 1,15 1,20 1,05 1,20 1,05 1,15 e [%] 1,00 1,00 1,00 1,00 1,20 1,05	[m²] 63,41 81,49 55,36 39,78 26,52 30,94 Anetta [m²] 1.708,89 631,57 413,26 1.483,28 75,36 35,36	W/(m ² K) o [W/(mK)] 0,195 0,195 0,195 1,400 1,400 1,400 1,400 0,043 0,043 0,132 0,108 0,144 1,400	[W/K] 12,35 15,87 10,78 55,69 37,13 43,32 Hix [W/K] 73,47 27,28 54,75 160,81 10,82 49,50	[-] 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	[W] 355, 476, 283, 1.671, 975, 1.245, 5.007 ФТ [W] 935, 347, 1.369, 4.021, 324, 1.300,
nveruno_CV01a nveruno_CV01 nveruno_CV01 nveruno_CV01a nveruno_CV01b nveruno_CV01con scherm nveruno_CV01con scherm	dispersione Esterno Esterno Esterno Esterno Esterno Esterno Esterno Esterno Esterno Terreno Terreno Esterno	[-] NW NE SW NE SW NW Or [-] NE SW NE	[%] 1,15 1,20 1,05 1,20 1,05 1,15 e [%] 1,00 1,00 1,00 1,00 1,00 1,00 1,20 1,05 1,20	[m²] 63,41 81,49 55,36 39,78 26,52 30,94 Anetta [m²] 1.708,89 631,57 413,26 1.483,28 75,36 35,36 35,36	U o ψ [W/(m²K)] o [W/(mK)] 0,195 0,195 1,400 1,400 1,400 0,043 0,043 0,132 0,108 0,144 1,400 1,400	[W/K] 12,35 15,87 10,78 55,69 37,13 43,32 Hix [W/K] 73,47 27,28 54,75 160,81 10,82 49,50 49,50	[-] 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	[W] 355, 476, 283, 1.671, 975, 1.245, 5.007 ФТ [W] 935, 347, 1.369, 4.021, 324, 1.300, 1.485,
nveruno_CV01a nveruno_CV01b nveruno_CV01c nv	dispersione Esterno Overso di dispersione Terreno Terreno Esterno	[-] NW NE SW NE SW NW Or [-] NE SW	[%] 1,15 1,20 1,05 1,20 1,05 1,15 e [%] 1,00 1,00 1,00 1,00 1,20 1,05	[m²] 63,41 81,49 55,36 39,78 26,52 30,94 Anetta [m²] 1.708,89 631,57 413,26 1.483,28 75,36 35,36	W/(m ² K) o [W/(mK)] 0,195 0,195 0,195 1,400 1,400 1,400 1,400 0,043 0,043 0,132 0,108 0,144 1,400	[W/K] 12,35 15,87 10,78 55,69 37,13 43,32 Hix [W/K] 73,47 27,28 54,75 160,81 10,82 49,50	[-] 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	[W] 355. 476. 283. 1.671. 975. 1.245. 5.007 ΦΤ [W] 935. 347. 1.369. 4.021. 324. 1.300. 1.485. 325.
nveruno_CV01a nveruno_C001 nveruno_C005 nveruno_COP02a nveruno_COP01a nveruno_CV01b nveruno_CV01b nveruno_CV01b nveruno_CV01b nveruno_CV01b nveruno_CV01c nv	dispersione Esterno Overso di dispersione Terreno Esterno	[-] NW NE SW NE SW NW Or [-] NE SW NE SW NE SW NS SW NS SW NS SW NS SW NS SW	[%] 1,15 1,20 1,05 1,20 1,05 1,15 e [%] 1,00 1,00 1,00 1,00 1,00 1,20 1,05 1,20 1,05	[m²] 63,41 81,49 55,36 39,78 26,52 30,94 Anetta [m²] 1.708,89 631,57 413,26 1.483,28 75,36 35,36 35,36 8,84	U o ψ [W/(m²K)] o [W/(mK)] 0,195 0,195 1,400 1,400 1,400 0,043 0,043 0,132 0,108 0,144 1,400 1,400	[W/K] 12,35 15,87 10,78 55,69 37,13 43,32 Hix [W/K] 73,47 27,28 54,75 160,81 10,82 49,50 49,50	[-] 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	[W] 355, 476, 283, 1.671, 975, 1.245, 5.007 ФТ [W] 935, 347, 1.369, 4.021, 324, 1.300, 1.485,
nveruno_CV01a nveruno_C001 nveruno_C005 nveruno_COP02a nveruno_COP01a nveruno_CV01b nveruno_CV01b nveruno_CV01b nveruno_CV01b nveruno_CV01b nveruno_CV01c nv	dispersione Esterno Overso di dispersione Terreno Esterno	[-] NW NE SW NE SW NW Or [-] NE SW NE SW NE SW NS SW NS SW NS SW NS SW NS SW	[%] 1,15 1,20 1,05 1,20 1,05 1,15 e [%] 1,00 1,00 1,00 1,00 1,00 1,20 1,05 1,20 1,05	[m²] 63,41 81,49 55,36 39,78 26,52 30,94 Anetta [m²] 1.708,89 631,57 413,26 1.483,28 75,36 35,36 35,36 8,84	U o ψ [W/(m²K)] o [W/(mK)] 0,195 0,195 1,400 1,400 1,400 0,043 0,043 0,132 0,108 0,144 1,400 1,400	[W/K] 12,35 15,87 10,78 55,69 37,13 43,32 Hix [W/K] 73,47 27,28 54,75 160,81 10,82 49,50 49,50	[-] 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	[W] 355. 476. 283. 1.671. 975. 1.245. 5.007 ΦΤ [W] 935. 347. 1.369. 4.021. 324. 1.300. 1.485. 325.
nveruno_CV01a nveruno_C001 nveruno_C005 nveruno_COP02a nveruno_COP01a nveruno_CV01b nveruno_CV01b nveruno_CV01b nveruno_CV01b nveruno_CV01b nveruno_CV01c nv	dispersione Esterno Overso di dispersione Terreno Esterno	[-] NW NE SW NE SW NW Or [-] NE SW NE SW NE SW NS SW NS SW NS SW NS SW NS SW	[%] 1,15 1,20 1,05 1,20 1,05 1,15 e [%] 1,00 1,00 1,00 1,00 1,00 1,20 1,05 1,20 1,05	[m²] 63,41 81,49 55,36 39,78 26,52 30,94 Anetta [m²] 1.708,89 631,57 413,26 1.483,28 75,36 35,36 35,36 8,84	[W/(m²K)] o [W/(mK)] 0,195 0,195 0,195 1,400 1,400 1,400 1,400 U o ψ [W/(m²K)] o [W/(mK)] 0,043 0,043 0,132 0,108 0,144 1,400 1,400 1,400	[W/K] 12,35 15,87 10,78 55,69 37,13 43,32 Hix [W/K] 73,47 27,28 54,75 160,81 10,82 49,50 49,50	[-] 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	[W] 355. 476. 283. 1.671. 975. 1.245. 5.007 ΦΤ [W] 935. 347. 1.369. 4.021. 324. 1.300. 1.485. 325.
nveruno_CV01a nveruno_CV01a nveruno_CV01a nveruno_CV01a D1-2_PT_170x260_con tenda D1-2_PT_170x260_con tenda D1-2_PT_170x260_con tenda D1-2_PT_170x260_con tenda OTALE B. Scuola primaria - 23. 050-55 Con B. Scuola primaria - 18. 036-38 Aule sinistra Elemento disperdente nveruno_C001 nveruno_C005 nveruno_C005 nveruno_C0P02a nveruno_CV01b D1-2_P1_170x260_con scherm	dispersione Esterno Terreno Terreno Esterno Esterno	[-] NW NE SW NE SW NW Or [-] NE SW NE SW NE CC	[%] 1,15 1,20 1,05 1,20 1,05 1,15 e [%] 1,00 1,00 1,00 1,00 1,00 1,05 1,20 1,05 1,20 1,05	[m²] 63,41 81,49 55,36 39,78 26,52 30,94 Anetta [m²] 1.708,89 631,57 413,26 1.483,28 75,36 35,36 35,36 8,84	[W/(m²K)] o [W/(mK)] 0,195 0,195 0,195 1,400 1,400 1,400 1,400 U o ψ [W/(m²K)] o [W/(mK)] 0,043 0,043 0,132 0,108 0,144 1,400 1,400 1,400	[W/K] 12,35 15,87 10,78 55,69 37,13 43,32 Hix [W/K] 73,47 27,28 54,75 160,81 10,82 49,50 49,50 12,38	[-] 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	[W] 355, 476, 283, 1.671, 975, 1.245, 5.007 ΦΤ [W] 935, 347, 1.369, 4.021, 324, 1.300, 1.485, 325,
niveruno_CV01a niveruno_CV01a niveruno_CV01a niveruno_CV01a D1-2_PT_170x260_con tenda D1-2_PT_170x260_con tenda D1-2_PT_170x260_con tenda D1-2_PT_170x260_con tenda TOTALE B. Scuola primaria - 23. 050-55 Con B. Scuola primaria - 18. 036-38 Aule sinistra Elemento disperdente D1-2_P1_0005 D1-2_P1_170x260_con scherm	dispersione Esterno Esterno Esterno Esterno Esterno Esterno Esterno Esterno Esterno Terreno Esterno Esterno	[-] NW NE SW NE SW NW Or [-] NE SW NE SW NW Or	[%] 1,15 1,20 1,05 1,20 1,05 1,15 e [%] 1,00 1,00 1,00 1,00 1,00 1,05 1,20 1,05 1,20 1,05	[m²] 63,41 81,49 55,36 39,78 26,52 30,94 Anetta [m²] 1.708,89 631,57 413,26 1.483,28 75,36 35,36 35,36 8,84 Anetta	[W/(m²K)] o [W/(mK)] 0,195 0,195 0,195 1,400 1,400 1,400 1,400 U o ψ [W/(m²K)] o [W/(mK)] 0,043 0,043 0,132 0,108 0,144 1,400 1,400 1,400	[W/K] 12,35 15,87 10,78 55,69 37,13 43,32 Hix [W/K] 73,47 27,28 54,75 160,81 10,82 49,50 49,50 12,38 Hix	[-] 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	[W] 355. 476. 283. 1.671. 975. 1.245. 5.007 ФТ [W] 935. 347. 1.369. 4.021. 324. 1.300. 1.485. 325.

Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	ΦТ
	dispersione	[-]	[%]	[m ²]	$[W/(m^2K)]$	[W/K]	[-]	[W]

1.671,17

TOTALE B. Scuola primaria - 21. 045-046-047 Laboratori+ sala prof P1

<u>B. Scuola primaria - 20. 044 Laboratorio P1</u> - Δ 9progetto = <u>25,0 °C</u>

					o [W/(mK)]			
Inveruno_CV01b	Esterno	SW	1,05	18,80	0,144	2,70	1,00	70,86
TOTALE B. Scuola primaria - 20. 044 Laborator	<u>io P1</u>							70,86
B. Scuola primaria - 22. 048-49-51 Wc P1 - Δ9p	rogetto = 25,0 °C							
Elemente disperdente	Verso di	Or	0	Anetta	Пош	Hix	htry	ФΤ
Elemento disperdente			е		U ο ψ [W/(m ² K)]		btrx	
	dispersione	[-]	[%]	[m ²]	o [W/(mK)]	[W/K]	[-]	[W]
Inveruno_CV01c	Esterno	SE	1,10	37,09	0,143	5,32	1,00	146,24
Inveruno_CV01c	Esterno	NE	1,20	28,55	0,143	4,09	1,00	122,80
Inveruno_CV01c	Esterno	SW	1,05	27,14	0,143	3,89	1,00	102,1
TOTALE B. Scuola primaria - 22. 048-49-51 Wc	<u>P1</u>							371,1
B. Scuola primaria - 2. 009-060 zona servizio +	$\underline{\mathbf{wc}}$ - $\Delta \vartheta$ progetto = $\underline{25}$	<u>,0 °C</u>						
Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	ФΤ
					[W/(m ² K)]			
	dispersione	[-]	[%]	[m ²]	o [W/(mK)]	[W/K]	[-]	[W]
Inveruno_CV01c	Esterno	NE	1,20	30,94	0,143	4,43	1,00	133,08
Inveruno_CV01c	Esterno	NW	1,15	24,49	0,143	3,51	1,00	100,9
ED1-2_170x85	Esterno	NE	1,20	2,89	1,400	4,05	1,00	121,4
ED1-2_170x85 ED1-2_170x260	Esterno	SW	1,05	2,89 4,42	1,400	4,05	1,00	106,2
	Esterno	SE	1,10	4,42	1,400	6,19	1,00	170,2
TOTALE B. Scuola primaria - 2. 009-060 zona s	ervizio + wc							631,9
B. Scuola primaria - 16. 023 Connettivo palest	<u>ra</u> - Δ9progetto = <u>25,0</u>	°C						
				A		1.1.		**
Elemento disperdente	Verso di	Or	е	Anetta	Uοψ [W/(m ² K)]	Hix	btrx	ΦТ
	dispersione	[-]	[%]	[m ²]	o [W/(mK)]	[W/K]	[-]	[W]
Inveruno_CV03c	Esterno	SE	1,10	9,82	0,184	1,81	1,00	49,8
Inveruno_CV03c TOTALE B. Scuola primaria - 16, 023 Connettivo		SE	1,10	9,82	. , ,,	1,81	1,00	49,80
Inveruno_CV03c TOTALE B. Scuola primaria - 16. 023 Connettivo		SE	1,10	9,82	. , ,,	1,81	1,00	49,80 49,8
	o palestra	SE	1,10	9,82	. , ,,	1,81	1,00	
TOTALE B. Scuola primaria - 16. 023 Connettiv	o palestra	SE	1,10 e	9,82 Anetta	. , ,,	1,81	1,00	
TOTALE B. Scuola primaria - 16. 023 Connettivo B. Scuola primaria - 13. 011 Atrio palestra - Δ9	progetto = 25,0 °C Verso di	Or	е	Anetta	0,184	Hix	btrx	49,8 ΦΤ
TOTALE B. Scuola primaria - 16. 023 Connettivo B. Scuola primaria - 13. 011 Atrio palestra - Δ9 Elemento disperdente	progetto = 25,0 °C Verso di dispersione	Or [-]	e [%]	Anetta [m²]	U ο ψ [W/(m ² K)] ο [W/(mK)]	Hix [W/K]	btrx [-]	49,8 ΦT [W]
TOTALE B. Scuola primaria - 16. 023 Connettivo B. Scuola primaria - 13. 011 Atrio palestra - Δ9 Elemento disperdente	progetto = 25,0 °C Verso di	Or	е	Anetta	0,184 U ο ψ [W/(m²K)]	Hix	btrx	49,8 ΦT [W]
TOTALE B. Scuola primaria - 16. 023 Connettiv B. Scuola primaria - 13. 011 Atrio palestra - Δ9 Elemento disperdente Inveruno_CV03c	progetto = 25,0 °C Verso di dispersione Esterno	Or [-]	e [%]	Anetta [m²]	U ο ψ [W/(m ² K)] ο [W/(mK)]	Hix [W/K]	btrx [-]	49,8 ΦT [W] 579,79
TOTALE B. Scuola primaria - 16. 023 Connettiv B. Scuola primaria - 13. 011 Atrio palestra - Δ9 Elemento disperdente Inveruno_CV03c TOTALE B. Scuola primaria - 13. 011 Atrio pale	progetto = 25,0 °C Verso di dispersione Esterno	Or [-]	e [%]	Anetta [m²]	U ο ψ [W/(m ² K)] ο [W/(mK)]	Hix [W/K]	btrx [-]	49,8 ΦT [W] 579,79
TOTALE B. Scuola primaria - 16. 023 Connettiv B. Scuola primaria - 13. 011 Atrio palestra - Δ9 Elemento disperdente Inveruno_CV03c TOTALE B. Scuola primaria - 13. 011 Atrio pale	progetto = 25,0 °C Verso di dispersione Esterno	Or [-]	e [%]	Anetta [m²]	U ο ψ [W/(m ² K)] ο [W/(mK)]	Hix [W/K]	btrx [-]	49,8 ΦT [W] 579,7
TOTALE B. Scuola primaria - 16. 023 Connettiv B. Scuola primaria - 13. 011 Atrio palestra - Δ9 Elemento disperdente Inveruno_CV03c TOTALE B. Scuola primaria - 13. 011 Atrio pale B. Scuola primaria - 5. 012 Atrio - Δ9progetto =	verso di dispersione Esterno Stra Verso di Verso di Verso di Verso di	Or [-] NW	e [%] 1,15	Anetta [m²] 109,35	U ο ψ [W/(m²K)] ο [W/(mK)] 0,184	Hix [W/K] 20,16	btrx [-] 1,00	49,8 ΦT [W] 579,7 579,7
TOTALE B. Scuola primaria - 16. 023 Connettiv B. Scuola primaria - 13. 011 Atrio palestra - Δ9 Elemento disperdente Inveruno_CV03c TOTALE B. Scuola primaria - 13. 011 Atrio pale B. Scuola primaria - 5. 012 Atrio - Δ9progetto =	progetto = 25,0 °C Verso di dispersione Esterno Stra Verso di dispersione	Or [-] NW	e [%] 1,15	Anetta [m²] 109,35 Anetta [m²]	U o ψ [W/(m²K)] o [W/(mK)] 0,184 U o ψ [W/(m²K)] o [W/(mK)]	Hix [W/K] 20,16	btrx [-] 1,00 btrx [-]	49,8 ΦT [W] 579,7 579,7
TOTALE B. Scuola primaria - 16. 023 Connettiv B. Scuola primaria - 13. 011 Atrio palestra - Δ9 Elemento disperdente Inveruno_CV03c TOTALE B. Scuola primaria - 13. 011 Atrio pale B. Scuola primaria - 5. 012 Atrio - Δ9progetto =	verso di dispersione Esterno Stra Verso di Verso di Verso di Verso di	Or [-] NW	e [%] 1,15	Anetta [m²] 109,35	U o ψ [W/(m²K)] o [W/(mK)] 0,184	Hix [W/K] 20,16	btrx [-] 1,00	49,8 ΦT [W] 579,79 579,7 ΦT [W]
TOTALE B. Scuola primaria - 16. 023 Connettiv B. Scuola primaria - 13. 011 Atrio palestra - Δ9 Elemento disperdente Inveruno_CV03c TOTALE B. Scuola primaria - 13. 011 Atrio pale B. Scuola primaria - 5. 012 Atrio - Δ9progetto = Elemento disperdente Inveruno_CV01a	progetto = 25,0 °C Verso di dispersione Esterno Stra Verso di dispersione	Or [-] NW	e [%] 1,15	Anetta [m²] 109,35 Anetta [m²]	U o ψ [W/(m²K)] o [W/(mK)] 0,184 U o ψ [W/(m²K)] o [W/(mK)]	Hix [W/K] 20,16	btrx [-] 1,00 btrx [-]	49,8 ΦT [W] 579,7 579,7 ΦT [W] 282,2
TOTALE B. Scuola primaria - 16. 023 Connettiv B. Scuola primaria - 13. 011 Atrio palestra - Δ9 Elemento disperdente Inveruno_CV03c TOTALE B. Scuola primaria - 13. 011 Atrio pale B. Scuola primaria - 5. 012 Atrio - Δ9progetto = Elemento disperdente Inveruno_CV01a TOTALE B. Scuola primaria - 5. 012 Atrio	verso di dispersione Esterno Verso di dispersione Esterno Verso di dispersione Esterno Esterno Verso di dispersione Esterno	Or [-] NW	e [%] 1,15	Anetta [m²] 109,35 Anetta [m²]	U o ψ [W/(m²K)] o [W/(mK)] 0,184 U o ψ [W/(m²K)] o [W/(mK)]	Hix [W/K] 20,16	btrx [-] 1,00 btrx [-]	49,8 ΦT [W] 579,7 579,7 ΦT [W] 282,2
B. Scuola primaria - 16. 023 Connettivo B. Scuola primaria - 13. 011 Atrio palestra - Δ9 Elemento disperdente Inveruno_CV03c TOTALE B. Scuola primaria - 13. 011 Atrio pale B. Scuola primaria - 5. 012 Atrio - Δ9progetto = Elemento disperdente Inveruno_CV01a TOTALE B. Scuola primaria - 5. 012 Atrio B. Scuola primaria - 15. 024-25 Spogliatoi Pale	Progetto = 25,0 °C Verso di dispersione Esterno Verso di dispersione Esterno Verso di dispersione Esterno Esterno Verso di dispersione Esterno	Or [-] NW Or [-] SE	e [%] 1,15 e [%]	Anetta [m²] 109,35 Anetta [m²] 52,68	U ο ψ [W/(m²K)] ο [W/(mK)] 0,184 U ο ψ [W/(m²K)] ο [W/(mK)]	Hix [W/K] 20,16	btrx [-] 1,00 btrx [-] 1,00	49,6 ΦT [W] 579,7 579,7 ΦT [W] 282,2 282,2
TOTALE B. Scuola primaria - 16. 023 Connettiv B. Scuola primaria - 13. 011 Atrio palestra - Δ9 Elemento disperdente Inveruno_CV03c TOTALE B. Scuola primaria - 13. 011 Atrio pale B. Scuola primaria - 5. 012 Atrio - Δ9progetto = Elemento disperdente Inveruno_CV01a TOTALE B. Scuola primaria - 5. 012 Atrio	Progetto = 25,0 °C Verso di dispersione Esterno Stra Verso di dispersione Esterno Verso di dispersione Esterno Verso di Verso di Verso di Verso di	Or [-] NW Or [-] SE	e [%] 1,15 e [%] 1,10	Anetta [m²] 109,35 Anetta [m²] 52,68	U o ψ [W/(m²K)] o [W/(mK)] 0,184 U o ψ [W/(m²K)] o [W/(mK)]	Hix [W/K] 20,16 Hix [W/K] 10,26	btrx [-] 1,00 btrx [-] 1,00 btrx	ΦT [W] 579,7 579,7 ΦT [W] 282,2 282,2
B. Scuola primaria - 16. 023 Connettivo B. Scuola primaria - 13. 011 Atrio palestra - Δ9 Elemento disperdente Inveruno_CV03c TOTALE B. Scuola primaria - 13. 011 Atrio pale B. Scuola primaria - 5. 012 Atrio - Δ9progetto = Elemento disperdente Inveruno_CV01a TOTALE B. Scuola primaria - 5. 012 Atrio B. Scuola primaria - 15. 024-25 Spogliatoi Pale	Progetto = 25,0 °C Verso di dispersione Esterno Verso di dispersione Esterno Verso di dispersione Esterno Esterno Verso di dispersione Esterno	Or [-] NW Or [-] SE	e [%] 1,15 e [%]	Anetta [m²] 109,35 Anetta [m²] 52,68	U ο ψ [W/(m²K)] ο [W/(mK)] ο,184 U ο ψ [W/(m²K)] ο,195	Hix [W/K] 20,16	btrx [-] 1,00 btrx [-] 1,00	49,8 ΦT [W] 579,7 579,7 ΦT [W] 282,2 282,2
TOTALE B. Scuola primaria - 16. 023 Connettiv B. Scuola primaria - 13. 011 Atrio palestra - Δ9 Elemento disperdente Inveruno_CV03c TOTALE B. Scuola primaria - 13. 011 Atrio pale B. Scuola primaria - 5. 012 Atrio - Δ9progetto = Elemento disperdente Inveruno_CV01a TOTALE B. Scuola primaria - 5. 012 Atrio B. Scuola primaria - 15. 024-25 Spogliatoi Pale Elemento disperdente	Progetto = 25,0 °C Verso di dispersione Esterno Stra Verso di dispersione Esterno Verso di dispersione Esterno Verso di Verso di Verso di Verso di	Or [-] NW Or [-] SE	e [%] 1,15 e [%] 1,10	Anetta [m²] 109,35 Anetta [m²] 52,68	U o ψ [W/(m²K)] o [W/(mK)] 0,184 U o ψ [W/(m²K)] o [W/(mK)] 0,195	Hix [W/K] 20,16 Hix [W/K] 10,26	btrx [-] 1,00 btrx [-] 1,00 btrx	ΦT [W] 579,7 579,7 ΦT [W] 282,2 282,2 ΦT [W]
TOTALE B. Scuola primaria - 16. 023 Connettiv B. Scuola primaria - 13. 011 Atrio palestra - Δ9 Elemento disperdente Inveruno_CV03c TOTALE B. Scuola primaria - 13. 011 Atrio pale B. Scuola primaria - 5. 012 Atrio - Δ9progetto = Elemento disperdente Inveruno_CV01a TOTALE B. Scuola primaria - 5. 012 Atrio B. Scuola primaria - 15. 024-25 Spogliatoi Pale Elemento disperdente	Progetto = 25,0 °C Verso di dispersione Esterno Verso di dispersione Esterno Verso di dispersione Esterno Verso di dispersione Verso di dispersione	Or [-] NW Or [-] SE Or [-]	e [%] 1,15 e [%] 1,10	Anetta [m²] 109,35 Anetta [m²] 52,68 Anetta [m²]	U o ψ [W/(m²K)] o [W/(mK)] 0,184 U o ψ [W/(m²K)] o [W/(mK)] o [W/(mK)] o [W/(mK)]	Hix [W/K] 20,16 Hix [W/K] 10,26	btrx [-] 1,00 btrx [-] 1,00 btrx [-] 1,00 btrx	ΦT [W] 579,7 579,7 579,7 Φ T [W] 282,2 282,2 Φ T [W] 130,2
TOTALE B. Scuola primaria - 16. 023 Connettiv B. Scuola primaria - 13. 011 Atrio palestra - Δ9 Elemento disperdente Inveruno_CV03c TOTALE B. Scuola primaria - 13. 011 Atrio pale B. Scuola primaria - 5. 012 Atrio - Δ9progetto = Elemento disperdente Inveruno_CV01a TOTALE B. Scuola primaria - 5. 012 Atrio B. Scuola primaria - 15. 024-25 Spogliatoi Pale Elemento disperdente	Progetto = 25,0 °C Verso di dispersione Esterno Stra Verso di dispersione Esterno Verso di dispersione Esterno Stra - Δ9progetto = 25 Verso di dispersione Esterno Esterno Esterno Esterno Esterno	Or [-] NW Or [-] SE	e [%] 1,15 e [%] 1,10	Anetta [m²] 109,35 Anetta [m²] 52,68 Anetta [m²] 29,99	U o ψ [W/(m²K)] o [W/(mK)] 0,184 U o ψ [W/(m²K)] o [W/(mK)] o,195	Hix [W/K] 20,16 Hix [W/K] 10,26 Hix [W/K] 4,73	btrx [-] 1,00 bt	ΦT [W] 579,7 579,7 ΦT [W] 282,2 ΦT [W] 282,2 99,0
Elemento disperdente Inveruno_CV03c TOTALE B. Scuola primaria - 13. 011 Atrio palestra - Δ9 Elemento disperdente Inveruno_CV03c TOTALE B. Scuola primaria - 13. 011 Atrio pale B. Scuola primaria - 5. 012 Atrio - Δ9progetto = Elemento disperdente Inveruno_CV01a TOTALE B. Scuola primaria - 5. 012 Atrio B. Scuola primaria - 15. 024-25 Spogliatoi Pale Elemento disperdente Inveruno_CV03b Inveruno_CV03b TOTALE B. Scuola primaria - 15. 024-25 Spogliatoi Pale	Progetto = 25,0 °C Verso di dispersione Esterno Verso di dispersione Esterno Verso di dispersione Esterno Stra - Δ9progetto = 25 Verso di dispersione Esterno Esterno Esterno Esterno Esterno Esterno Atoi Palestra	Or [-] NW Or [-] SE 5.0 °C Or [-] SE SE SW	e [%] 1,15 e [%] 1,10	Anetta [m²] 109,35 Anetta [m²] 52,68 Anetta [m²] 29,99	U o ψ [W/(m²K)] o [W/(mK)] 0,184 U o ψ [W/(m²K)] o [W/(mK)] o,195	Hix [W/K] 20,16 Hix [W/K] 10,26 Hix [W/K] 4,73	btrx [-] 1,00 bt	ΦT [W] 579,7 579,7 ΦT [W] 282,2 ΦT [W] 282,2 99,0
TOTALE B. Scuola primaria - 16. 023 Connettiv B. Scuola primaria - 13. 011 Atrio palestra - Δ9 Elemento disperdente Inveruno_CV03c TOTALE B. Scuola primaria - 13. 011 Atrio pale B. Scuola primaria - 5. 012 Atrio - Δ9progetto = Elemento disperdente Inveruno_CV01a TOTALE B. Scuola primaria - 5. 012 Atrio B. Scuola primaria - 15. 024-25 Spogliatoi Pale Elemento disperdente Inveruno_CV03b Inveruno_CV03b TOTALE B. Scuola primaria - 15. 024-25 Spoglia B. Scuola primaria - 17. 043 Laboratorio pales	Progetto = 25,0 °C Verso di dispersione Esterno Verso di dispersione Esterno Verso di dispersione Esterno Verso di dispersione Esterno Stra - Δθprogetto = 25 Verso di dispersione Esterno Esterno Esterno Esterno Esterno Esterno Esterno Adoprogetto = 25	Or [-] NW Or [-] SE SE SE SE SE SE SE SE SE SE	e [%] 1,15 e [%] 1,10 1,05	Anetta [m²] 109,35 Anetta [m²] 52,68 Anetta [m²] 29,99 23,90	U o ψ [W/(m²K)] o [W/(mK)] 0,184 U o ψ [W/(m²K)] o [W/(mK)] o [W/(mK)] o [W/(mK)] o,195	Hix [W/K] 20,16 Hix [W/K] 10,26 Hix [W/K] 3,77	btrx [-] 1,00 btrx [-] 1,00 1,00	ΦT [W] 579,7 ΦT [W] 579,7 579,7 ΦT [W] 282,2 282,2 ΦT [W] 130,2 99,0 229,2
TOTALE B. Scuola primaria - 16. 023 Connettivo B. Scuola primaria - 13. 011 Atrio palestra - Δ9 Elemento disperdente Inveruno_CV03c TOTALE B. Scuola primaria - 13. 011 Atrio pale B. Scuola primaria - 5. 012 Atrio - Δ9progetto = Elemento disperdente Inveruno_CV01a TOTALE B. Scuola primaria - 5. 012 Atrio B. Scuola primaria - 15. 024-25 Spogliatoi Pale Elemento disperdente Inveruno_CV03b Inveruno_CV03b TOTALE B. Scuola primaria - 15. 024-25 Spogliatoi Pale	Progetto = 25,0 °C Verso di dispersione Esterno Verso di dispersione Esterno Verso di dispersione Esterno Stra - Δ9progetto = 25 Verso di dispersione Esterno Esterno Esterno Esterno Esterno Esterno Atoi Palestra	Or [-] NW Or [-] SE 5.0 °C Or [-] SE SW 25.0 °C	e [%] 1,15 e [%] 1,10	Anetta [m²] 109,35 Anetta [m²] 52,68 Anetta [m²] 29,99 23,90 Anetta	U ο ψ [W/(m²K)] ο [W/(mK)] ο [W/(mK)] ο [W/(mK)] ο [W/(m²K)] ο [W/(m²K)] ο [W/(m²K)] ο [W/(m²K)] ο [W/(m²K)] ο [W/(m²K)]	Hix [W/K] 20,16 Hix [W/K] 10,26 Hix [W/K] 4,73	btrx [-] 1,00 bt	49,8 ΦT [W] 579,7 579,7 ΦT [W] 282,2 ΦT [W] 130,2: 99,0 229,2
TOTALE B. Scuola primaria - 16. 023 Connettivo B. Scuola primaria - 13. 011 Atrio palestra - Δ9 Elemento disperdente Inveruno_CV03c TOTALE B. Scuola primaria - 13. 011 Atrio pale B. Scuola primaria - 5. 012 Atrio - Δ9progetto = Elemento disperdente Inveruno_CV01a TOTALE B. Scuola primaria - 5. 012 Atrio B. Scuola primaria - 15. 024-25 Spogliatoi Pale Elemento disperdente Inveruno_CV03b Inveruno_CV03b TOTALE B. Scuola primaria - 15. 024-25 Spoglia B. Scuola primaria - 17. 043 Laboratorio pales	Progetto = 25,0 °C Verso di dispersione Esterno Verso di dispersione Esterno Verso di dispersione Esterno Verso di dispersione Esterno Stra - Δθprogetto = 25 Verso di dispersione Esterno Esterno Esterno Esterno Esterno Esterno Esterno Adoprogetto = 25	Or [-] NW Or [-] SE SE SE SE SE SE SE SE SE SE	e [%] 1,15 e [%] 1,10 1,05	Anetta [m²] 109,35 Anetta [m²] 52,68 Anetta [m²] 29,99 23,90	U o ψ [W/(m²K)] o [W/(mK)] 0,184 U o ψ [W/(m²K)] o [W/(mK)] o [W/(m²K)] o [W/(mK)] o [W/(mK)] o [W/(m²K)] o [W/(m²K)] o [W/(m²K)]	Hix [W/K] 20,16 Hix [W/K] 10,26 Hix [W/K] 3,77	btrx [-] 1,00 btrx [-] 1,00 1,00	49,8 ΦT [W] 579,76 579,7 ΦT [W] 282,2 282,2 ΦT [W] 130,26 99,0 229,2
TOTALE B. Scuola primaria - 16. 023 Connettiv B. Scuola primaria - 13. 011 Atrio palestra - Δ9 Elemento disperdente Inveruno_CV03c TOTALE B. Scuola primaria - 13. 011 Atrio pale B. Scuola primaria - 5. 012 Atrio - Δ9progetto = Elemento disperdente Inveruno_CV01a TOTALE B. Scuola primaria - 5. 012 Atrio B. Scuola primaria - 15. 024-25 Spogliatoi Pale Elemento disperdente Inveruno_CV03b Inveruno_CV03b TOTALE B. Scuola primaria - 15. 024-25 Spoglia B. Scuola primaria - 17. 043 Laboratorio pales	Progetto = 25,0 °C Verso di dispersione Esterno Verso di dispersione Esterno Stra Verso di dispersione Esterno Stra - Δ9progetto = 25 Verso di dispersione Esterno Esterno Esterno Esterno Verso di dispersione Esterno Verso di dispersione Esterno Verso di Verso di Verso di verso di verso di verso di	Or [-] NW Or [-] SE 5.0 °C Or [-] SE SW 25.0 °C	e [%] 1,15 e [%] 1,10 1,10 e [%]	Anetta [m²] 109,35 Anetta [m²] 52,68 Anetta [m²] 29,99 23,90 Anetta	U ο ψ [W/(m²K)] ο [W/(mK)] ο [W/(mK)] ο [W/(mK)] ο [W/(m²K)] ο [W/(m²K)] ο [W/(m²K)] ο [W/(m²K)] ο [W/(m²K)] ο [W/(m²K)]	Hix [W/K] 20,16 Hix [W/K] 10,26 Hix [W/K] 4,73 3,77	btrx [-] 1,00 trx [-] 1,00	49,8 ΦT [W] 579,7 579,7 ΦT [W] 282,2 ΦT [W] 130,2(29,2) ΦT

512,06

TOTALE B. Scuola primaria - 17. 043 Laboratorio palestra P1

Refettorio - 1. 010 Refettorio - Δ9progetto = 25,0 °C

Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	ΦТ
	dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W]
ED1-2_PT_170x150	Esterno	NE	1,20	2,55	1,400	3,57	1,00	107,15
ED2_P1_130x235 - con tenda	Esterno	SE	1,10	13,80	1,400	19,32	1,00	531,54
Inveruno_CV01a	Esterno	NE	1,20	16,01	0,195	3,12	1,00	93,58
Inveruno_CV01a	Esterno	SE	1,10	39,15	0,195	7,62	1,00	209,77
Inveruno_CV01a	Esterno	SW	1,05	40,95	0,195	7,98	1,00	209,45
Inveruno_CV01a	Esterno	NW	1,15	18,59	0,195	3,62	1,00	104,14
ED1-2_PT_170x260_con tenda	Esterno	NE	1,20	8,84	1,400	12,38	1,00	371,45
ED1-2_PT_170x260_con tenda	Esterno	SE	1,10	22,10	1,400	30,94	1,00	851,23
ED1-2_PT_170x260_con tenda	Esterno	SW	1,05	22,10	1,400	30,94	1,00	812,54
ED1-2_170x260	Esterno	NW	1,15	8,84	1,400	12,38	1,00	355,97
ED1-2_170x260	Esterno	NE	1,20	4,42	1,400	6,19	1,00	185,72
ED1-2_170x260	Esterno	SW	1,05	8,84	1,400	12,38	1,00	325,02

4.157,55

Palestra - 14. 026 Palestra - Δ9progetto = 25,0 °C

TOTALE Refettorio - 1. 010 Refettorio

Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	ΦТ
	dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W]
ED2_PT_120x230	Esterno	NW	1,15	13,80	1,400	19,32	1,00	555,70
ED1-2_170x260	Esterno	NW	1,15	26,52	1,400	37,13	1,00	1.067,91
ED1-2_170x260	Esterno	SE	1,10	26,52	1,400	37,13	1,00	1.021,48
Inveruno_CV03a	Esterno	SW	1,05	23,90	0,153	3,65	1,00	95,74
Inveruno_CV03a	Esterno	NE	1,20	319,86	0,153	48,79	1,00	1.464,39
ED 2_180x240	Esterno	NE	1,20	8,64	1,400	12,10	1,00	363,04
ED 2_180x240	Esterno	SW	1,05	12,96	1,400	18,14	1,00	476,49
ED2_P1_130x235 - con scherm	Esterno	SE	1,10	13,80	1,400	19,32	1,00	531,54
ED2_PT_120x230	Esterno	SE	1,10	13,80	1,400	19,32	1,00	531,54
ED2_P1_130x235	Esterno	NW	1,15	13,80	1,400	19,32	1,00	555,70
TOTALE Palestra - 14. 026 Palestra								6.663,54

Or Orientamento cardinale dell'elemento

Coefficiente di maggiorazione della dispersione in funzione dell'orientamento [%]

 $\textbf{An} \circ \textbf{I}$ Area strutture al netto degli elementi in detrazione [m²] o lunghezza per i ponti termici [m] $\textbf{U} \circ \psi$ Trasmittanza per le strutture $[W/(m^2K)]$ o trasmittanza lineica per i ponti termici [W/(mK)] Coefficiente di scambio termico della struttura verso l'ambiente x [W/K]

Hix

btr,x Fattore di riduzione equivalente dello scambio termico verso l'ambiente x [-]

Coefficiente di scambio termico per trasmissione Н

Potenza termica dispersa per trasmissione in condizioni di progetto [W]

DISPERSIONI PER VENTILAZIONE

Scuola Inveruno

Volume netto totale dell'edificio Vn: 9.987,6 m³

Descrizione dell'ambiente	Ricambio d'aria effettivo	Portata d'aria ricambiata dall'impianto di ventilazione meccanica	Portata d'aria circolante attraverso apparecchi di recupero del calore	Rendimento termico degli apparecchi di recupero del calore
		m ³ /h	m ³ /h	%
-				

Zona: B. Scuola primaria

Locale	Vn	V'i	HV	Δ9р	ФV
		[m ³ /h]	[W/K]	[°C]	[W]
4. 005-8 Aule dx PT	613,9	307,0	104,4	25,0	2.610,2
12. 029 Infermeria	65,9	33,0	11,2	25,0	280,2
8. 018-53-30-54 Connettivo PT	1.203,1	601,5	204,5	25,0	5.115,5
19. 039-42 Aule destra P1	613,9	307,0	104,4	25,0	2.610,2
25. 056-57 Scale P1	55,6	27,8	9,5	25,0	236,4
3. 001-4 Aule sinistra PT	613,9	307,0	104,4	25,0	2.610,2
11-26. cavedi + ascensore	80,2	40,1	13,6	25,0	341,0
6. 012-16 Reception, segreterie, portinerie	233,9	116,9	39,8	25,0	994,5
17. 017-022 WC PT	196,3	98,2	33,4	25,0	834,6
9. 056-57 Scale PT	111,2	55,6	18,9	25,0	472,8
23. 050-55 Connettivo + FF P1	1.008,8	504,4	171,5	25,0	4.289,3
18. 036-38 Aule sinistra P1	454,3	227,1	77,2	25,0	1.931,6
21. 045-046-047 Laboratori+ sala prof P1	651,6	325,8	110,8	25,0	2.770,5
20. 044 Laboratorio P1	244,6	122,3	41,6	25,0	1.040,0
22. 048-49-51 Wc P1	178,9	89,4	30,4	25,0	760,7
2. 009-060 zona servizio + wc	158,3	79,2	26,9	25,0	673,1
16. 023 Connettivo palestra	73,6	36,8	12,5	25,0	312,9
13. 011 Atrio palestra	451,3	225,6	76,7	25,0	1.918,9
5. 012 Atrio	262,8	131,4	44,7	25,0	1.117,4
10-24. 028-52 Ripostigli	12,2	6,1	2,1	25,0	51,9
15. 024-25 Spogliatoi Palestra	143,5	71,8	24,4	25,0	610,1
17. 043 Laboratorio palestra P1	274,6	137,3	46,7	25,0	1.167,6

Zona: Refettorio

Locale	Vn	V'i	HV	$\Delta \vartheta p$	ФV
		[m ³ /h]	[W/K]	[°C]	[W]
1. 010 Refettorio	630,4	315,2	107,2	25,0	2.680,4

Zona: Palestra

Locale	Vn	V'i	HV	$\Delta \vartheta$ p	ФV
		[m ³ /h]	[W/K]	[°C]	[W]
14. 026 Palestra	1.654,8	827,4	281,3	25,0	7.036,1

Totale Scuola Inveruno	4.993,8	1.697,9	-	42.466,4	
------------------------	---------	---------	---	----------	--

VnVolume netto del singolo localeHVCoefficiente globale di scambio termico per ventilazioneV'iPortata d'aria effettiva di ventilazione per singolo localeΦVPotenza termica dispersa per ventilazione in condizioni diΔ9pSalto termico di progetto verso l'esternoprogetto

POTENZA TERMICA DI RIPRESA

Scuola Inveruno

Zona: B. Scuola primaria - fRH = 18,0 W/m2

Locale	Su	ΦRH
	[m ²]	[W]
4. 005-8 Aule dx PT	204,7	3.683,7
12. 029 Infermeria	22,0	395,5
8. 018-53-30-54 Connettivo PT	445,6	8.021,0
19. 039-42 Aule destra P1	204,7	3.683,7
25. 056-57 Scale P1	16,6	298,8
3. 001-4 Aule sinistra PT	204,7	3.683,7
11-26. cavedi + ascensore	20,6	370,1
6. 012-16 Reception, segreterie, portinerie	78,0	1.403,6
17. 017-022 WC PT	81,8	1.472,2
9. 056-57 Scale PT	33,2	597,6
23. 050-55 Connettivo + FF P1	373,6	6.725,2
18. 036-38 Aule sinistra P1	151,4	2.725,9
21. 045-046-047 Laboratori+ sala prof P1	217,2	3.909,6
20. 044 Laboratorio P1	81,5	1.467,5
22. 048-49-51 Wc P1	74,5	1.341,5
2. 009-060 zona servizio + wc	58,6	1.055,5
16. 023 Connettivo palestra	27,3	490,5
13. 011 Atrio palestra	69,4	1.249,7
5. 012 Atrio	87,6	1.577,0
10-24. 028-52 Ripostigli	5,1	91,4
15. 024-25 Spogliatoi Palestra	59,8	1.076,6
17. 043 Laboratorio palestra P1	91,5	1.647,7

Zona: Refettorio - fRH = 18,0 W/m2

Locale	Su	ΦRH
	[m ²]	[W]
1. 010 Refettorio	210,1	3.782,3

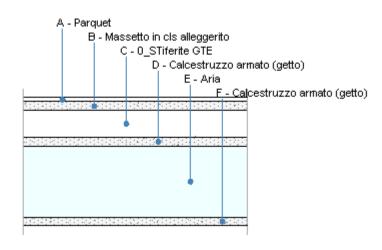
Zona: Palestra - fRH = 18,0 W/m2

Locale	Su	ΦRH
	[m ²]	[W]
14. 026 Palestra	306,4	5.515,9
Totale Scuola Inveruno	3.125,9	56.266,4

fRH Fattore di ripresa

Su Superficie utile netta del locale ΦRH Potenza termica di ripresa

DISPERSIONI DI PROGETTO E CARICO TERMICO TOTALE


Scuola Inveruno

Zona riscaldata	ФΤ	ФУ	ФRН	ΦHL	
	[W]	[W]	[W]	[W]	
B. Scuola primaria	33.351,01	32.749,91	46.968,12	113.069,04	
Refettorio	4.157,55	2.680,40	3.782,34	10.620,30	
Palestra	6.663,54	7.036,06	5.515,92	19.215,52	

	Totale Scuola Inveruno	44.172,10	42.466,38	56.266,38	142.904,86
--	------------------------	-----------	-----------	-----------	------------

Φτ Potenza termica dispersa per trasmissione in condizioni di progetto
 Φν Potenza termica dispersa per ventilazione in condizioni di progetto
 ΦRH Potenza termica di ripresa

ΦRH Potenza termica di ripresaΦHL Carico termico totale

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: Inveruno_CO01

Note:

Tipologia:	<u>Pavimento</u>	Disposizione:	<u>Orizzontale</u>
Verso:	<u>Terreno</u>	Spessore:	<u>722,0</u> mm
Trasmittanza U:	0,043 W/(m ² K)	Resistenza R:	23,259 (m ² K)/W
Massa superf.:	337 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità term. C	Fattore μa	Fattore μu
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso verticale discendente)	-	-	0,170	-	<u>-</u>	-	-
_ A	Parquet	22,0	0,150	0,147	500	1,60	1,0	0,0
В	Massetto in cls alleggerito	50,0	1,080	0,046	1.600	1,00	3,3	3,3
С	0_STiferite GTE	150,0	0,022	6,818	34	1,40	89.900 ,0	89.900 ,0
D	Calcestruzzo armato (getto)	50,0	1,910	0,026	2.400	1,00	0,0	999.99 9,0
Е	Aria	400,0	0,025	16,026	1	1,01	1,0	1,0
F	Calcestruzzo armato (getto)	50,0	1,910	0,026	2.400	1,00	0,0	999.99 9,0
	TOTALE	722,0		23,259				

Conduttanza unitaria superficiale interna: 5,880 W/(m²K)

Resistenza unitaria superficiale interna: 0,170 (m²K)/W

Conduttanza unitaria superficiale esterna: 0,000 W/(m²K)

Resistenza unitaria superficiale esterna: 0,000 (m²K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	<u>Inveruno</u>	Zona climatica:	<u>E</u>
Trasmittanza della struttura U:	0,043 W/(m ² K)	Trasmittanza limite Ulim:	0,578 W/(m ² K)

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

ESITO VERIFICA DI TRASMITTANZA: -

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	Inveruno	Tipo di calcolo:	Classi di concentrazione
Verso:	Terreno	Coeff. di correzione btr,x:	
Classe di edificio:	Edifici con indice di affollamento non	Volume interno V:	- m ³
Classe di edificio:	noto	volume interno v:	- Mo
Produz. nota di vapore G:	- kg/h		

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	-	11,2	100,0	0,5
febbraio	20,0	-	11,2	100,0	0,5
marzo	20,0	-	11,2	100,0	0,5
aprile	20,0	-	11,2	100,0	0,5
maggio	20,0	-	11,2	100,0	0,5
giugno	20,0	-	11,2	100,0	0,5
luglio	20,0	-	11,2	100,0	0,5
agosto	20,0	-	11,2	100,0	0,5
settembre	20,0	-	11,2	100,0	0,5
ottobre	20,0	-	11,2	100,0	0,5
novembre	20,0	-	11,2	100,0	0,5
dicembre	20,0	_	11,2	100,0	0,5

CONDIZIONE	CONDIZIONE Temperatura interna θi		Temperatura esterna θe	Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	11,20	1.331,00
ESTIVA	20,00	865,20	11,20	1.331,00

Х	La struttura non è soggetta a fenomeni di condensa interstiziale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 584,843 Pa.
	La struttura è soggetta a fenomeni di condensa.
	La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).
X	La struttura non è soggetta a fenomeni di condensa superficiale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 584,843 Pa.

VERIFICA FORMAZIONE MUFFE SUPERFICIALI

CONDIZIONI AL CONTORNO INTERNE ED ESTERNE

	Temperatura esterna Te	Pressione esterna Pe	Variazione di pressione ΔP	Pressione interna Pi	Temperatura interna Ti	Umidità relativa interna φi
Mese	°C	Pa	Pa	Pa	°C	%
ottobre	11,2	1331,03	411,81	1742,83	20	100
novembre	11,2	1331,03	411,81	1742,83	20	100
dicembre	11,2	1331,03	411,81	1742,83	20	100
gennaio	11,2	1331,03	411,81	1742,83	20	100
febbraio	11,2	1331,03	411,81	1742,83	20	100
marzo	11,2	1331,03	411,81	1742,83	20	100
aprile	11,2	1331,03	411,81	1742,83	20	100

CALCOLO DEL FATTORE DI RISCHIO

La verifica della formazione di muffa è eseguita in maniera conforme a quanto riportato nella norma UNI EN ISO 13788

	Temperatura superficiale critica Tsi-critica	Fattore di rischio ammissibile frsi- amm
Mese	°C	-

ottobre	18,87	0,8715
novembre	18,87	0,8715
dicembre	18,87	0,8715
gennaio	18,87	0,8715
febbraio	18,87	0,8715
marzo	18,87	0,8715
aprile	18,87	0,8715

Riepilogo dei risultati:

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione

Fattore di resistenza superficiale fRsi: 0,8715 (mese di Ottobre)

Fattore di resistenza superficiale ammissibile massimo fRsiAmm: 0,9944

ESITO VERIFICA DI MUFFA: OK

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8
	2.319,7	2.319,7	2.319,7	2.319,7	2.319,7	2.319,7	2.319,7	2.319,7	2.319,7	2.319,7	2.319,7	2.319,7
A-B	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8
	2.317,2	2.317,2	2.317,2	2.317,2	2.317,2	2.317,2	2.317,2	2.317,2	2.317,2	2.317,2	2.317,2	2.317,2
B-C	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0
	1.972,3	1.972,3	1.972,3	1.972,3	1.972,3	1.972,3	1.972,3	1.972,3	1.972,3	1.972,3	1.972,3	1.972,3
C-D	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0
	1.971,1	1.971,1	1.971,1	1.971,1	1.971,1	1.971,1	1.971,1	1.971,1	1.971,1	1.971,1	1.971,1	1.971,1
D-E	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0
	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9
E-Esterno	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0
	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0

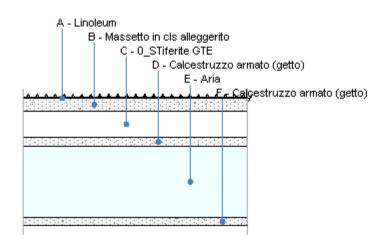
TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9
A-B	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9
B-C	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9
C-D	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3
D-E	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3
E-Esterno	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2
E-Esterno	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. E/F												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]												

Verifica di condensa interstiziale:


Quantità massima di vapore accumulato mensilmente Gc: 0,0000 (mese di -) kg/m^2 nell'interfaccia -

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia Gc,max: 0,5000 kg/m²

Quantità di vapore residuo Ma: 0,0000 (mese di -) kg/m² nell'interfaccia -

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA febbiáo mairo ts tá Gennaio Febbraio Marzo арі le тадаја giugna ti ti ti, 2000 Aprile Maggio Giugno settem bie lugia agasto tá tá Ħ Luglio Agosto Settembre attable dcemble navem Die tá Ottobre Novembre Dicembre LEGENDA Temperatura [°C] Pressione del vapore [Pa] Press. di saturazione [Pa]

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: Inveruno_CO05

Note:

Tipologia:	<u>Pavimento</u>	Disposizione:	Orizzontale
Verso:	<u>Terreno</u>	Spessore:	<u>724,0</u> mm
Trasmittanza U:	0,043 W/(m ² K)	Resistenza R:	23,155 (m ² K)/W
Massa superf.:	362 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore	Conduttività	Resistenza	Densità	Capacità term.	Fattore	Fattore
	Sualo	s	λ	R	ρ	С	μа	μи
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso verticale discendente)	-	-	0,170	-		-	-
А	Linoleum	4,0	0,170	0,024	1.200	1,40	1.000, 0	800,0
В	Massetto in cls alleggerito	70,0	1,080	0,065	1.600	1,00	3,3	3,3
С	0_STiferite GTE	150,0	0,022	6,818	34	1,40	89.900 ,0	89.900 ,0
D	Calcestruzzo armato (getto)	50,0	1,910	0,026	2.400	1,00	0,0	999.99 9,0
Е	Aria	400,0	0,025	16,026	1	1,01	1,0	1,0
F	Calcestruzzo armato (getto)	50,0	1,910	0,026	2.400	1,00	0,0	999.99 9,0
	TOTALE	724,0		23,155				

Conduttanza unitaria superficiale interna: 5,880 W/(m²K)

Resistenza unitaria superficiale interna: 0,170 (m²K)/W

Conduttanza unitaria superficiale esterna: 0,000 W/(m²K)

Resistenza unitaria superficiale esterna: 0,000 (m²K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	<u>Inveruno</u>	Zona climatica:	<u>E</u>
Trasmittanza della struttura U:	0,043 W/(m ² K)	Trasmittanza limite Ulim:	0,578 W/(m ² K)

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

ESITO VERIFICA DI TRASMITTANZA: -

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	<u>Inveruno</u>	Tipo di calcolo:	Classi di concentrazione
Verso:	<u>Terreno</u>	Coeff. di correzione btr,x:	
Classe di adificia	Edifici con indice di affollamento non	Valuma interna V	3
Classe di edificio:	noto	Volume interno V:	- m ³
Produz. nota di vapore G:	- kg/h		

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	-	11,2	100,0	0,5
febbraio	20,0	-	11,2	100,0	0,5
marzo	20,0	-	11,2	100,0	0,5
aprile	20,0	-	11,2	100,0	0,5
maggio	20,0	-	11,2	100,0	0,5
giugno	20,0	-	11,2	100,0	0,5
luglio	20,0	-	11,2	100,0	0,5
agosto	20,0	-	11,2	100,0	0,5
settembre	20,0	-	11,2	100,0	0,5
ottobre	20,0	-	11,2	100,0	0,5
novembre	20,0	-	11,2	100,0	0,5
dicembre	20,0	-	11,2	100,0	0,5

CONDIZIONE	Temperatura interna θi	Pressione parziale interna pi	Temperatura esterna θe	Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	11,20	1.331,00
ESTIVA	20,00	865,20	11,20	1.331,00

X	La struttura non è soggetta a fenomeni di condensa interstiziale.
	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 584,801 Pa.
	La struttura è soggetta a fenomeni di condensa.
	La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).
×	La struttura non è soggetta a fenomeni di condensa superficiale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 584,801 Pa.

VERIFICA FORMAZIONE MUFFE SUPERFICIALI

CONDIZIONI AL CONTORNO INTERNE ED ESTERNE

M	Temperatura esterna Te	Pressione esterna Pe	Variazione di pressione ΔP	Pressione interna Pi	Temperatura interna Ti	Umidità relativa interna φi
Mese	°C	Pa	Pa	Pa	°C	%
ottobre	11,2	1331,03	411,81	1742,83	20	100
novembre	11,2	1331,03	411,81	1742,83	20	100
dicembre	11,2	1331,03	411,81	1742,83	20	100
gennaio	11,2	1331,03	411,81	1742,83	20	100
febbraio	11,2	1331,03	411,81	1742,83	20	100
marzo	11,2	1331,03	411,81	1742,83	20	100
aprile	11,2	1331,03	411,81	1742,83	20	100

CALCOLO DEL FATTORE DI RISCHIO

La verifica della formazione di muffa è eseguita in maniera conforme a quanto riportato nella norma UNI EN ISO 13788

	Temperatura superficiale critica Tsi-critica	Fattore di rischio ammissibile frsi- amm
Mese	°C	-

ottobre	18,87	0,8715
novembre	18,87	0,8715
dicembre	18,87	0,8715
gennaio	18,87	0,8715
febbraio	18,87	0,8715
marzo	18,87	0,8715
aprile	18,87	0,8715

Riepilogo dei risultati:

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione

Fattore di resistenza superficiale fRsi: 0,8715 (mese di Ottobre)

Fattore di resistenza superficiale ammissibile massimo fRsiAmm: 0,9944

ESITO VERIFICA DI MUFFA: OK

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.742,7	1.742,7	1.742,7	1.742,7	1.742,7	1.742,7	1.742,7	1.742,7	1.742,7	1.742,7	1.742,7	1.742,7
	2.326,3	2.326,3	2.326,3	2.326,3	2.326,3	2.326,3	2.326,3	2.326,3	2.326,3	2.326,3	2.326,3	2.326,3
A-B	1.742,7	1.742,7	1.742,7	1.742,7	1.742,7	1.742,7	1.742,7	1.742,7	1.742,7	1.742,7	1.742,7	1.742,7
	2.322,8	2.322,8	2.322,8	2.322,8	2.322,8	2.322,8	2.322,8	2.322,8	2.322,8	2.322,8	2.322,8	2.322,8
B-C	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0
	1.975,7	1.975,7	1.975,7	1.975,7	1.975,7	1.975,7	1.975,7	1.975,7	1.975,7	1.975,7	1.975,7	1.975,7
C-D	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0
	1.974,5	1.974,5	1.974,5	1.974,5	1.974,5	1.974,5	1.974,5	1.974,5	1.974,5	1.974,5	1.974,5	1.974,5
D-E	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0
	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9
E-Esterno	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0
	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0

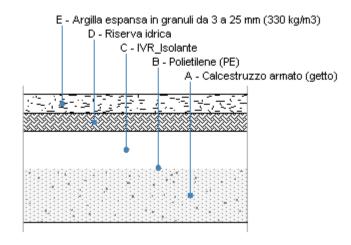
TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9
A-B	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9
B-C	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9
C-D	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3
D-E	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3	17,3
E-Esterno	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2
E-Esterno	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. E/F												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]												

Verifica di condensa interstiziale:


Quantità massima di vapore accumulato mensilmente Gc: 0,0000 (mese di -) kg/m 2 nell'interfaccia -

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia Gc,max: 0,5000 kg/m²

Quantità di vapore residuo Ma: 0,0000 (mese di -) kg/m² nell'interfaccia -

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA febbiáo mairo tá tá Gennaio Febbraio Marzo арі le тадаја giugna ti, ti, ti, 2000 Aprile Maggio Giugno settem bie lugia agasto tá tá Ħ Luglio Agosto Settembre dcemble attable navem Die tá Ottobre Novembre Dicembre LEGENDA Temperatura [°C] Pressione del vapore [Pa] Press. di saturazione [Pa]

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: Inveruno_COP01a

Note:

Tipologia:	<u>Copertura</u>	Disposizione:	<u>Orizzontale</u>
Verso:	<u>Esterno</u>	Spessore:	<u>701,0</u> mm
Trasmittanza U:	0,108 W/(m ² K)	Resistenza R:	9,224 (m ² K)/W
Massa superf.:	770 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità term. C	Fattore μa	Fattore μu
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso verticale ascendente)	-	-	0,100	-	_	-	-
А	Calcestruzzo armato (getto)	300,0	1,910	0,157	2.400	1,00	0,0	999.99 9,0
В	Polietilene (PE)	1,0	0,350	0,003	950	2,30	54.054 ,1	54.054 ,1
С	IVR_Isolante	200,0	0,028	7,143	35	1,40	56,0	56,0
D	Riserva idrica	100,0	0,128	0,781	90	1,00	1,0	0,0
Е	Argilla espansa in granuli da 3 a 25 mm (330 kg/m3)	100,0	0,100	1,000	330	0,92	3,2	3,2
	Adduttanza esterna (flusso verticale ascendente)	-	-	0,040	-	-	-	-
	TOTALE	701,0		9,224				

Conduttanza unitaria superficiale interna: 10,000 W/(m²K)

Resistenza unitaria superficiale interna: 0,100 (m²K)/W

Conduttanza unitaria superficiale esterna: 25,000 W/(m²K)

Resistenza unitaria superficiale esterna: 0,040 (m²K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	<u>Inveruno</u>	Zona climatica:	<u>E</u>
Trasmittanza della struttura U:	0,108 W/(m ² K)	Trasmittanza limite Ulim:	0,220 W/(m ² K)

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

ESITO VERIFICA DI TRASMITTANZA: -

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	Inveruno	Tipo di calcolo:	Classi di concentrazione
Verso:	<u>Esterno</u>	Coeff. di correzione btr,x:	
Classe di edificio:	Edifici con indice di affollamento non	Volume interno V:	- m3
Classe di edificio:	noto	volume interno v:	- Wo
Produz. nota di vapore G:	- kg/h		

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	-	-0,1	84,9	0,5
febbraio	20,0	-	3,4	74,0	0,5
marzo	20,0	-	7,0	63,4	0,5
aprile	20,0	-	10,3	66,4	0,5
maggio	20,0	-	16,2	72,9	0,5
giugno	20,0	-	20,3	70,5	0,5
luglio	20,0	-	21,0	64,3	0,5
agosto	20,0	-	20,9	66,1	0,5
settembre	20,0	-	17,0	71,8	0,5
ottobre	20,0	-	11,4	90,7	0,5
novembre	20,0	-	5,9	94,7	0,5
dicembre	20,0	-	1,3	85,6	0,5

CONDIZIONE	Temperatura interna θi	Pressione parziale interna pi	Temperatura esterna θe	Pressione parziale esterna pe		
	°C Pa		°C	Pa		
INVERNALE	20,00	1.519,00	-0,10	514,20		
ESTIVA	20,00	1.615,60	21,00	1.597,60		

X	La struttura non è soggetta a fenomeni di condensa interstiziale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 570,635 Pa.
	La struttura è soggetta a fenomeni di condensa.
	La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).
×	La struttura non è soggetta a fenomeni di condensa superficiale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 570,635 Pa.

VERIFICA FORMAZIONE MUFFE SUPERFICIALI

CONDIZIONI AL CONTORNO INTERNE ED ESTERNE

Mese	Temperatura esterna Te °C	Pressione esterna Pe Pa	Variazione di pressione ΔP Pa	Pressione interna Pi Pa	Temperatura interna Ti °C	Umidità relativa interna φi %
ottobre	11,4	1221,38	405,3	1626,68	20	91
novembre	5,9	878,74	600,55	1479,29	20	95
dicembre	1,3	574,43	763,85	1338,28	20	86
gennaio	-0,1	514,17	810	1324,17	20	85
febbraio	3,4	576,19	689,3	1265,49	20	74
marzo	7,0	634,73	561,5	1196,23	20	63
aprile	10,3	831,79	444,35	1276,14	20	66

CALCOLO DEL FATTORE DI RISCHIO

La verifica della formazione di muffa è eseguita in maniera conforme a quanto riportato nella norma UNI EN ISO 13788

	Temperatura superficiale critica Tsi-critica	Fattore di rischio ammissibile frsi- amm
Mese	°C	-

ottobre	17,77	0,7408
novembre	16,27	0,7356
dicembre	14,71	0,7171
gennaio	14,55	0,7287
febbraio	13,85	0,6293
marzo	12,98	0,4602
aprile	13,98	0,3789

Riepilogo dei risultati:

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione

Fattore di resistenza superficiale fRsi: 0,7408 (mese di Ottobre)

Fattore di resistenza superficiale ammissibile massimo fRsiAmm: 0,9859

ESITO VERIFICA DI MUFFA: OK

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.324,2	1.265,5	1.196,2	1.276,1	1.577,5	1.766,8	1.662,1	1.700,1	1.596,5	1.626,7	1.479,3	1.338,3
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.324,2	1.265,5	1.196,2	1.276,1	1.577,5	1.766,8	1.662,1	1.700,1	1.596,5	1.626,7	1.479,3	1.338,3
	2.257,1	2.270,9	2.285,1	2.298,1	2.321,7	2.338,2	2.341,0	2.340,6	2.324,9	2.302,5	2.280,7	2.262,6
A-B	657,5	698,1	734,1	910,4	1.384,1	1.693,2	1.609,0	1.644,1	1.426,5	1.293,1	985,0	709,6
	2.256,3	2.270,1	2.284,5	2.297,7	2.321,5	2.338,2	2.341,0	2.340,6	2.324,8	2.302,1	2.280,1	2.261,8
В-С	519,3	580,6	638,3	834,6	1.344,1	1.678,0	1.598,0	1.632,5	1.391,3	1.224,0	882,6	579,3
	805,4	979,4	1.192,1	1.421,8	1.930,6	2.372,0	2.455,6	2.443,5	2.010,5	1.506,6	1.123,2	871,4
C-D	518,1	579,5	637,5	833,9	1.343,7	1.677,9	1.597,9	1.632,4	1.391,0	1.223,4	881,7	578,1
	713,7	888,5	1.106,7	1.346,7	1.891,5	2.375,7	2.468,4	2.455,0	1.978,6	1.436,3	1.035,5	779,6
D-E	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	609,9	783,1	1.005,2	1.255,7	1.842,6	2.380,5	2.484,9	2.469,8	1.938,2	1.350,6	932,1	674,7
E-Add	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	605,5	779,2	1.001,3	1.252,2	1.840,6	2.380,7	2.485,6	2.470,4	1.936,6	1.347,3	928,2	670,7

TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	19,8	19,8	19,9	19,9	20,0	20,0	20,0	20,0	20,0	19,9	19,8	19,8
A-B	19,4	19,5	19,6	19,7	19,9	20,0	20,0	20,0	19,9	19,8	19,6	19,5
B-C	19,4	19,5	19,6	19,7	19,9	20,0	20,0	20,0	19,9	19,8	19,6	19,5
C-D	3,9	6,7	9,6	12,2	17,0	20,2	20,8	20,7	17,6	13,1	8,7	5,0
D-E	2,2	5,3	8,5	11,4	16,6	20,3	20,9	20,8	17,3	12,4	7,5	3,4
E-Add	0,0	3,5	7,1	10,3	16,2	20,3	21,0	20,9	17,0	11,4	6,0	1,4
Add-Esterno	-0,1	3,4	7,0	10,3	16,2	20,3	21,0	20,9	17,0	11,4	5,9	1,3

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. E/F												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]												

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente Gc: 0,0000 (mese di -) kg/m 2 nell'interfaccia -

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia Gc,max: 0,5000 kg/m²

Quantità di vapore residuo Ma: 0,0000 (mese di -) kg/m² nell'interfaccia -

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA fennián mairo 8 6 5 6 6 8 8 ģ 8 ģ Gennaio Febbraio Marzo арі le тадоја giugna 8 5 5 5 6 **4** 8 8 8 ģ Aprile Maggio Giugno lugia agasto settemble 8 6 8 6 6 6 Luglio Settembre Agosto attable dicembre. navem Die 8 5 5 5 6 **6** Ottobre Dicembre Novembre LEGENDA Temperatura [°C] Pressione del vapore [Pa] Press. di saturazione [Pa]

VERIFICA DI MASSA E INERZIA TERMICA

Il comportamento termico dinamico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13786.

Verifica di massa:

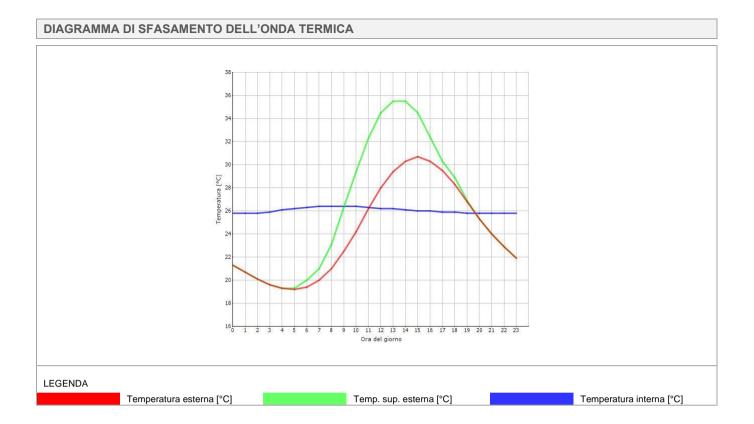
Massa della struttura per metro quadrato di superficie: 770 kg/m²

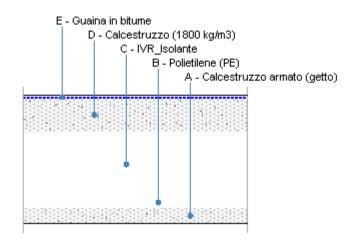
Valore minimo di massa superficiale: 230 kg/m 2

ESITO VERIFICA DI MASSA: OK

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

CONDIZIONI AL CONTORNO


Comune:	Inveruno	Colorazione:	<u>Chiaro</u>
Orientamento:	<u>s</u>	Mese massima insolazione:	luglio
Temp. media mese massima insolaz.:	24,3 °C	Temperatura massima estiva:	30,7 °C
Escursione giorno più caldo dell'anno:	11,5 °C	Irradian. mensile massima piano orizz.:	275,46 W/m ²


INERZIA TERMICA

Tempo sfasamento dell'onda termica:	18h 42'	Fattore di attenuazione:	0,0423
Capacità termica interna C1:	95,6 kJ/(m ² /K)	Capacità termica esterna C2:	21,0 kJ/(m ² /K)
Ammettenza interna oraria:	13,0 W/(m ² /K)	Ammettenza interna in modulo:	7,0 W/(m ² /K)
Ammettenza esterna oraria:	15,0 W/(m ² /K)	Ammettenza esterna in modulo:	1,5 W/(m ² /K)
Trasmittanza termica periodica Y:	0,005 W/(m ² K)	Classificazione struttura da normativa:	
Trasmitt. termica periodica limite Ylim:	0,180 W/(m ² K)		

ESITO VERIFICA DI INERZIA: OK

	Temperatura esterna nel giorno più caldo Te	Irradiazione solare nel giorno più caldo dell'anno le	Temp. superficiale esterna nel giorno più caldo Te,sup	Temperatura interna nel giorno più caldo Ti
Ora	°C	W/m²	°C	°C
0:00	21,26	0,00	21,26	25,76
1:00	20,68	0,00	20,68	25,79
2:00	20,11	0,00	20,11	25,83
3:00	19,65	0,00	19,65	25,92
4:00	19,30	0,00	19,30	26,06
5:00	19,19	10,00	19,31	26,19
6:00	19,42	49,00	20,01	26,31
7:00	19,99	85,75	21,02	26,40
8:00	21,03	173,00	23,10	26,45
9:00	22,52	315,75	26,31	26,45
10:00	24,25	432,75	29,44	26,40
11:00	26,20	508,25	32,30	26,32
12:00	28,04	534,25	34,45	26,23
13:00	29,42	508,25	35,52	26,17
14:00	30,34	432,75	35,54	26,08
15:00	30,69	315,75	34,48	26,02
16:00	30,34	173,00	32,42	25,96
17:00	29,54	66,50	30,34	25,91
18:00	28,27	49,50	28,87	25,87
19:00	26,78	10,00	26,90	25,84
20:00	25,28	0,00	25,28	25,82
21:00	24,02	0,00	24,02	25,80
22:00	22,87	0,00	22,87	25,78
23:00	21,95	0,00	21,95	25,76

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: Inveruno_COP02a

Note:

Tipologia:	<u>Copertura</u>	Disposizione:	<u>Orizzontale</u>
Verso:	<u>Esterno</u>	Spessore:	388,0 mm
Trasmittanza U:	0,132 W/(m ² K)	Resistenza R:	7,548 (m ² K)/W
Massa superf.:	345 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità term.	Fattore μa	Fattore μu
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso verticale ascendente)	-	-	0,100	-	-	-	-
А	Calcestruzzo armato (getto)	50,0	1,910	0,026	2.400	1,00	0,0	999.99 9,0
В	Polietilene (PE)	30,0	0,350	0,086	950	2,30	54.054 ,1	54.054 ,1
С	IVR_Isolante	200,0	0,028	7,143	35	1,40	56,0	56,0
D	Calcestruzzo (1800 kg/m3)	100,0	0,940	0,106	1.800	0,88	3,3	3,3
E	Guaina in bitume	8,0	0,170	0,047	1.200	0,92	20.222	90.222
	Adduttanza esterna (flusso verticale ascendente)	-	-	0,040	-	-		-
	TOTALE	388,0		7,548				

Conduttanza unitaria superficiale interna: 10,000 W/(m²K)

Resistenza unitaria superficiale interna: 0,100 (m²K)/W

Conduttanza unitaria superficiale esterna: 25,000 W/(m²K)

Resistenza unitaria superficiale esterna: 0,040 (m²K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	<u>Inveruno</u>	Zona climatica:	<u>E</u>
Trasmittanza della struttura U:	0,132 W/(m ² K)	Trasmittanza limite Ulim:	0,220 W/(m ² K)

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

ESITO VERIFICA DI TRASMITTANZA: -

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	Inveruno	Tipo di calcolo:	Classi di concentrazione
Verso:	<u>Esterno</u>	Coeff. di correzione btr,x:	
Classe di edificio:	Edifici con indice di affollamento non	Volume interno V:	- m3
Classe di edificio:	noto	volume interno v:	- Wo
Produz. nota di vapore G:	- kg/h		

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	-	-0,1	84,9	0,5
febbraio	20,0	-	3,4	74,0	0,5
marzo	20,0	-	7,0	63,4	0,5
aprile	20,0	-	10,3	66,4	0,5
maggio	20,0	-	16,2	72,9	0,5
giugno	20,0	-	20,3	70,5	0,5
luglio	20,0	-	21,0	64,3	0,5
agosto	20,0	-	20,9	66,1	0,5
settembre	20,0	-	17,0	71,8	0,5
ottobre	20,0	-	11,4	90,7	0,5
novembre	20,0	-	5,9	94,7	0,5
dicembre	20,0	-	1,3	85,6	0,5

CONDIZIONE	Temperatura interna θi	Pressione parziale interna pi	Temperatura esterna θe	Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	-0,10	514,20
ESTIVA	20,00	1.615,60	21,00	1.597,60

X	La struttura non è soggetta a fenomeni di condensa interstiziale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 570,739 Pa.
	La struttura è soggetta a fenomeni di condensa.
	La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).
×	La struttura non è soggetta a fenomeni di condensa superficiale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 570,739 Pa.

VERIFICA FORMAZIONE MUFFE SUPERFICIALI

CONDIZIONI AL CONTORNO INTERNE ED ESTERNE

	Temperatura esterna Te	Pressione esterna Pe	Variazione di pressione ΔP	Pressione interna Pi	Temperatura interna Ti	Umidità relativa interna φi
Mese	°C	Pa	Pa	Pa	°C	%
ottobre	11,4	1221,38	405,3	1626,68	20	91
novembre	5,9	878,74	600,55	1479,29	20	95
dicembre	1,3	574,43	763,85	1338,28	20	86
gennaio	-0,1	514,17	810	1324,17	20	85
febbraio	3,4	576,19	689,3	1265,49	20	74
marzo	7,0	634,73	561,5	1196,23	20	63
aprile	10,3	831,79	444,35	1276,14	20	66

CALCOLO DEL FATTORE DI RISCHIO

La verifica della formazione di muffa è eseguita in maniera conforme a quanto riportato nella norma UNI EN ISO 13788

	Temperatura superficiale critica Tsi-critica	Fattore di rischio ammissibile frsi- amm
Mese	°C	-

ottobre	17,77	0,7408
novembre	16,27	0,7356
dicembre	14,71	0,7171
gennaio	14,55	0,7287
febbraio	13,85	0,6293
marzo	12,98	0,4602
aprile	13,98	0,3789

Riepilogo dei risultati:

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione

Fattore di resistenza superficiale fRsi: 0,7408 (mese di Ottobre)

Fattore di resistenza superficiale ammissibile massimo fRsiAmm: 0,9828

ESITO VERIFICA DI MUFFA: OK

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.324,2	1.265,5	1.196,2	1.276,1	1.577,5	1.766,8	1.662,1	1.700,1	1.596,5	1.626,7	1.479,3	1.338,3
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.324,2	1.265,5	1.196,2	1.276,1	1.577,5	1.766,8	1.662,1	1.700,1	1.596,5	1.626,7	1.479,3	1.338,3
	2.288,8	2.297,1	2.305,7	2.313,6	2.327,8	2.337,7	2.339,4	2.339,1	2.329,7	2.316,2	2.303,1	2.292,1
A-B	592,4	642,7	688,9	874,7	1.365,3	1.686,1	1.603,8	1.638,6	1.409,9	1.260,5	936,7	648,2
	2.256,6	2.270,4	2.284,7	2.297,9	2.321,6	2.338,2	2.341,0	2.340,6	2.324,8	2.302,3	2.280,3	2.262,1
B-C	587,3	638,4	685,4	871,9	1.363,8	1.685,5	1.603,4	1.638,2	1.408,6	1.258,0	933,0	643,4
	629,2	802,9	1.024,5	1.273,2	1.852,1	2.379,6	2.481,7	2.466,9	1.946,1	1.367,1	951,7	694,2
C-D	587,2	638,3	685,3	871,8	1.363,7	1.685,5	1.603,4	1.638,2	1.408,6	1.257,9	932,9	643,3
	616,4	789,8	1.011,7	1.261,6	1.845,8	2.380,2	2.483,8	2.468,8	1.940,9	1.356,2	938,7	681,2
D-E	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	610,8	784,0	1.006,1	1.256,5	1.843,0	2.380,5	2.484,8	2.469,6	1.938,6	1.351,4	933,0	675,5
E-Add	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	605,5	779,2	1.001,3	1.252,2	1.840,6	2.380,7	2.485,6	2.470,4	1.936,6	1.347,3	928,2	670,7

TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	19,7	19,8	19,8	19,9	19,9	20,0	20,0	20,0	20,0	19,9	19,8	19,8
А-В	19,7	19,7	19,8	19,8	19,9	20,0	20,0	20,0	19,9	19,9	19,8	19,7
B-C	19,4	19,5	19,6	19,7	19,9	20,0	20,0	20,0	19,9	19,8	19,6	19,5
C-D	0,4	3,8	7,3	10,5	16,3	20,3	21,0	20,9	17,1	11,6	6,3	1,8
D-E	0,1	3,6	7,1	10,4	16,2	20,3	21,0	20,9	17,0	11,5	6,1	1,5
E-Add	0,0	3,5	7,1	10,4	16,2	20,3	21,0	20,9	17,0	11,4	6,0	1,4
Add-Esterno	-0,1	3,4	7,0	10,3	16,2	20,3	21,0	20,9	17,0	11,4	5,9	1,3

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. E/F												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]												

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente Gc: 0,0000 (mese di -) kg/m 2 nell'interfaccia -

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia Gc,max: 0,5000 kg/m²

Quantità di vapore residuo Ma: 0,0000 (mese di -) kg/m² nell'interfaccia -

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA fennián mairo 8 6 5 6 6 8 8 ģ 8 Gennaio Febbraio Marzo арі le тадоја giugna 8 5 5 5 6 **4** 8 5 5 5 6 6 6 8 8 Aprile Maggio Giugno lugia agasto settemble 8 6 8 6 6 6 8 6 8 6 6 6 Luglio Settembre Agosto attable dicembre. navem Die 8 5 5 5 6 **6** 8 6 5 6 6 6 Ottobre Dicembre Novembre LEGENDA Temperatura [°C] Pressione del vapore [Pa] Press. di saturazione [Pa]

VERIFICA DI MASSA E INERZIA TERMICA

Il comportamento termico dinamico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13786.

Verifica di massa:

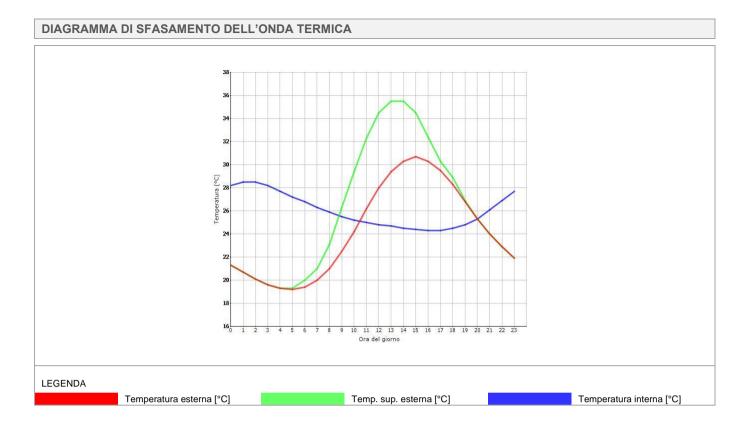
Massa della struttura per metro quadrato di superficie: 345 kg/m²

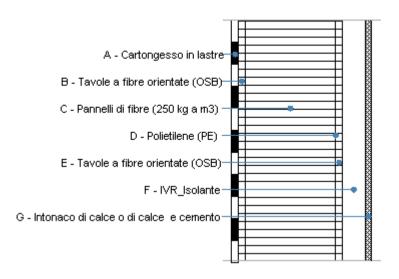
Valore minimo di massa superficiale: 230 kg/m 2

ESITO VERIFICA DI MASSA: OK

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

CONDIZIONI AL CONTORNO


Comune:	Inveruno	Colorazione:	<u>Chiaro</u>
Orientamento:	<u>s</u>	Mese massima insolazione:	luglio
Temp. media mese massima insolaz.:	24,3 °C	Temperatura massima estiva:	30,7 °C
Escursione giorno più caldo dell'anno:	11,5 °C	Irradian. mensile massima piano orizz.:	275,46 W/m ²


INERZIA TERMICA

Tempo sfasamento dell'onda termica:	12h 13'	Fattore di attenuazione:	0,2581
Capacità termica interna C1:	99,0 kJ/(m ² /K)	Capacità termica esterna C2:	94,6 kJ/(m ² /K)
Ammettenza interna oraria:	14,2 W/(m ² /K)	Ammettenza interna in modulo:	7,2 W/(m ² /K)
Ammettenza esterna oraria:	14,4 W/(m ² /K)	Ammettenza esterna in modulo:	6,9 W/(m ² /K)
Trasmittanza termica periodica Y:	0,034 W/(m ² K)	Classificazione struttura da normativa:	
Trasmitt. termica periodica limite Ylim:	0,180 W/(m ² K)		

ESITO VERIFICA DI INERZIA: OK

	Temperatura esterna nel giorno più caldo Te	Irradiazione solare nel giorno più caldo dell'anno le	Temp. superficiale esterna nel giorno più caldo Te,sup	Temperatura interna nel giorno più caldo Ti
Ora	°C	W/m²	°C	°C
0:00	21,26	0,00	21,26	28,22
1:00	20,68	0,00	20,68	28,49
2:00	20,11	0,00	20,11	28,50
3:00	19,65	0,00	19,65	28,22
4:00	19,30	0,00	19,30	27,69
5:00	19,19	10,00	19,31	27,15
6:00	19,42	49,00	20,01	26,78
7:00	19,99	85,75	21,02	26,27
8:00	21,03	173,00	23,10	25,85
9:00	22,52	315,75	26,31	25,52
10:00	24,25	432,75	29,44	25,23
11:00	26,20	508,25	32,30	24,99
12:00	28,04	534,25	34,45	24,81
13:00	29,42	508,25	35,52	24,66
14:00	30,34	432,75	35,54	24,51
15:00	30,69	315,75	34,48	24,40
16:00	30,34	173,00	32,42	24,31
17:00	29,54	66,50	30,34	24,31
18:00	28,27	49,50	28,87	24,49
19:00	26,78	10,00	26,90	24,75
20:00	25,28	0,00	25,28	25,29
21:00	24,02	0,00	24,02	26,12
22:00	22,87	0,00	22,87	26,92
23:00	21,95	0,00	21,95	27,66

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: Inveruno_CV01a

Note:

Tipologia:	<u>Parete</u>	Disposizione:	<u>Verticale</u>
Verso:	<u>Esterno</u>	Spessore:	311,0 mm
Trasmittanza U:	0,195 W/(m ² K)	Resistenza R:	5,135 (m ² K)/W
Massa superf.:	86 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità term.	Fattore μa	Fattore μυ
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	_	-	-
Α	Cartongesso in lastre	15,0	0,210	0,071	900	1,30	8,7	8,7
В	Tavole a fibre orientate (OSB)	15,0	0,130	0,115	650	1,70	50,0	30,0
С	Pannelli di fibre (250 kg a m3)	200,0	0,070	2,857	250	1,70	5,0	2,0
D	Polietilene (PE)	1,0	0,350	0,003	950	2,30	54.054 ,1	54.054 ,1
Е	Tavole a fibre orientate (OSB)	15,0	0,130	0,115	650	1,70	50,0	30,0
F	IVR_Isolante	50,0	0,028	1,786	35	1,40	56,0	56,0
G	Intonaco di calce o di calce e cemento	15,0	0,900	0,017	1.800	0,84	16,7	16,7
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-	-	-	-
	TOTALE	311,0		5,135				

Conduttanza unitaria superficiale interna: 7,690 W/(m²K)

Resistenza unitaria superficiale interna: 0,130 (m²K)/W

Conduttanza unitaria superficiale esterna: 25,000 W/(m²K)

Resistenza unitaria superficiale esterna: 0,040 (m²K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	<u>Inveruno</u>	Zona climatica:	<u>E</u>
Trasmittanza della struttura U:	0,195 W/(m ² K)	Trasmittanza limite Ulim:	0,260 W/(m ² K)

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

ESITO VERIFICA DI TRASMITTANZA: -

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	Inveruno	Tipo di calcolo:	Classi di concentrazione
Verso:	<u>Esterno</u>	Coeff. di correzione btr,x:	
Classe di edificio:	Edifici con indice di affollamento non	Volume interno V:	- m ³
Classe di edificio:	noto	volume interno v:	- Mo
Produz. nota di vapore G:	- kg/h		

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	-	-0,1	84,9	0,5
febbraio	20,0	-	3,4	74,0	0,5
marzo	20,0	-	7,0	63,4	0,5
aprile	20,0	-	10,3	66,4	0,5
maggio	20,0	-	16,2	72,9	0,5
giugno	20,0	-	20,3	70,5	0,5
luglio	20,0	-	21,0	64,3	0,5
agosto	20,0	-	20,9	66,1	0,5
settembre	20,0	-	17,0	71,8	0,5
ottobre	20,0	-	11,4	90,7	0,5
novembre	20,0	-	5,9	94,7	0,5
dicembre	20,0	-	1,3	85,6	0,5

CONDIZIONE	Temperatura interna θi	Pressione parziale interna pi	Temperatura esterna θe	Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	-0,10	514,20
ESTIVA	20,00	1.615,60	21,00	1.597,60

	La struttura non è soggetta a fenomeni di condensa interstiziale.
	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 0 Pa.
X	La struttura è soggetta a fenomeni di condensa.
^	La quantità stagionale di vapore condensato è pari a 0,182 kg/m² (rievaporabile durante il periodo estivo).
	La struttura non è soggetta a fenomeni di condensa superficiale.
X	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 571.264 Pa

VERIFICA FORMAZIONE MUFFE SUPERFICIALI

CONDIZIONI AL CONTORNO INTERNE ED ESTERNE

	Temperatura esterna Te	Pressione esterna Pe	Variazione di pressione ΔP	Pressione interna Pi	Temperatura interna Ti	Umidità relativa interna φi
Mese	°C	Pa	Pa	Pa	°C	%
ottobre	11,4	1221,38	405,3	1626,68	20	91
novembre	5,9	878,74	600,55	1479,29	20	95
dicembre	1,3	574,43	763,85	1338,28	20	86
gennaio	-0,1	514,17	810	1324,17	20	85
febbraio	3,4	576,19	689,3	1265,49	20	74
marzo	7,0	634,73	561,5	1196,23	20	63
aprile	10,3	831,79	444,35	1276,14	20	66

CALCOLO DEL FATTORE DI RISCHIO

La verifica della formazione di muffa è eseguita in maniera conforme a quanto riportato nella norma UNI EN ISO 13788

	Temperatura superficiale critica Tsi-critica	Fattore di rischio ammissibile frsi- amm
Mese	°C	-

ottobre	17,77	0,7408
novembre	16,27	0,7356
dicembre	14,71	0,7171
gennaio	14,55	0,7287
febbraio	13,85	0,6293
marzo	12,98	0,4602
aprile	13,98	0,3789

Riepilogo dei risultati:

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione

Fattore di resistenza superficiale fRsi: 0,7408 (mese di Ottobre)

Fattore di resistenza superficiale ammissibile massimo fRsiAmm: 0,9747

ESITO VERIFICA DI MUFFA: OK

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.324,2	1.265,5	1.196,2	1.276,1	1.577,5	1.766,8	1.662,1	1.700,1	1.596,5	1.626,7	1.479,3	1.338,3
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.322,4	1.264,0	1.195,0	1.275,2	1.577,0	1.766,6	1.662,0	1.700,0	1.596,0	1.625,8	1.478,0	1.336,6
	2.225,3	2.244,4	2.264,2	2.282,5	2.315,5	2.338,7	2.342,6	2.342,1	2.320,0	2.288,6	2.258,1	2.232,9
A-B	1.312,2	1.255,3	1.188,0	1.269,6	1.574,0	1.765,5	1.661,1	1.699,1	1.593,4	1.620,7	1.470,4	1.327,0
	2.163,4	2.192,8	2.223,4	2.251,8	2.303,2	2.339,6	2.345,9	2.345,0	2.310,3	2.261,3	2.214,0	2.175,1
В-С	1.298,7	1.243,8	1.178,6	1.262,2	1.570,1	1.764,0	1.660,1	1.698,0	1.590,0	1.613,9	1.460,4	1.314,2
	1.041,6	1.206,0	1.398,5	1.598,1	2.018,0	2.363,9	2.427,9	2.418,7	2.081,8	1.670,0	1.337,0	1.104,8
C-D	565,7	620,0	670,4	860,1	1.357,5	1.683,1	1.601,7	1.636,4	1.403,1	1.247,2	916,9	623,0
	1.040,8	1.205,2	1.397,8	1.597,6	2.017,7	2.363,9	2.428,0	2.418,7	2.081,6	1.669,5	1.336,3	1.104,0
D-E	555,5	611,4	663,4	854,5	1.354,6	1.682,0	1.600,9	1.635,5	1.400,5	1.242,1	909,4	613,4
	1.009,1	1.175,4	1.371,1	1.575,1	2.006,9	2.364,9	2.431,3	2.421,7	2.072,8	1.648,8	1.308,5	1.072,9
E-F	517,6	579,1	637,1	833,7	1.343,6	1.677,8	1.597,9	1.632,3	1.390,8	1.223,1	881,3	577,6
	615,9	789,3	1.011,2	1.261,2	1.845,6	2.380,2	2.483,9	2.468,8	1.940,7	1.355,8	938,2	680,8
F-G	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	613,0	786,3	1.008,3	1.258,5	1.844,1	2.380,4	2.484,4	2.469,3	1.939,5	1.353,3	935,3	677,8
G-Add	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	605,5	779,2	1.001,3	1.252,2	1.840,6	2.380,7	2.485,6	2.470,4	1.936,6	1.347,3	928,2	670,7
												,

TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	19,5	19,6	19,7	19,8	19,9	20,0	20,0	20,0	19,9	19,8	19,6	19,5
A-B	19,2	19,3	19,5	19,6	19,9	20,0	20,0	20,0	19,9	19,7	19,4	19,3
B-C	18,8	19,0	19,2	19,4	19,8	20,0	20,1	20,1	19,8	19,5	19,1	18,8
C-D	7,6	9,7	12,0	14,0	17,7	20,2	20,6	20,6	18,1	14,7	11,3	8,4
D-E	7,6	9,7	12,0	14,0	17,6	20,2	20,6	20,6	18,1	14,7	11,3	8,4
E-F	7,1	9,4	11,7	13,8	17,6	20,2	20,6	20,6	18,1	14,5	11,0	8,0
F-G	0,1	3,6	7,1	10,4	16,2	20,3	21,0	20,9	17,0	11,5	6,1	1,5
G-Add	0,1	3,5	7,1	10,4	16,2	20,3	21,0	20,9	17,0	11,5	6,0	1,4
Add-Esterno	-0,1	3,4	7,0	10,3	16,2	20,3	21,0	20,9	17,0	11,4	5,9	1,3

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. C/D												
Gc [Kg/m²]	0,0756	0,0100	-0,0647	-0,0956	-0,1317	0,0000	0,0000	0,0000	0,0000	0,0000	0,0351	0,0616
Ma [Kg/m²]	0,1723	0,1824	0,1177	0,0221	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0351	0,0967
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. E/F												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. F/G												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. G/H												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]												

gennaio - Interf. C/D. Formazione di condensa: $0,1723 \text{ kg/m}^2$

febbraio - Interf. C/D. Formazione di condensa: $0,1824\ kg/m^2$

marzo - Interf. C/D. Formazione di condensa: $0,1177\ kg/m^2$

aprile - Interf. C/D. Formazione di condensa: 0,0221 kg/m²

novembre - Interf. C/D. Formazione di condensa: 0,0351 kg/m²

dicembre - Interf. C/D. Formazione di condensa: 0,0967 kg/m²

Mese condensazione massima: febbraio

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente Gc: 0,0756 (mese di gennaio) kg/m² nell'interfaccia C-D

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia Gc,max: 0,5000 kg/m²

Quantità di vapore residuo Ma: 0,1824 (mese di febbraio) kg/m² nell'interfaccia C-D

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Interfaccia C-D - Formazione di condensa: 0,1824 kg/m²

DIAGRAMMI DI PRESSIONE E TEMPERATURA Fl^{2,500} p2.500 p2.500 20_F 2000 2,000 2,000 1.500 1500 1.500 1,000 1,000 Febbraio Gennaio Marzo арі le т*а*доја giugna 2.500 2,000 1,500 H1.500 H1.000 1,000 El₅₀₀ E]500 Aprile Maggio Giugno settemble lugia agasto 2.500 2000 1.500 1,000 E|500 Luglio Agosto Settembre dæmbe attable navem Die 2.000 2,000 1,500 1500 1500 H1.000 H1.000 1,000 Ottobre Novembre Dicembre LEGENDA Temperatura [°C] Pressione del vapore [Pa] Press. di saturazione [Pa]

VERIFICA DI MASSA E INERZIA TERMICA

Il comportamento termico dinamico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13786.

Verifica di massa:

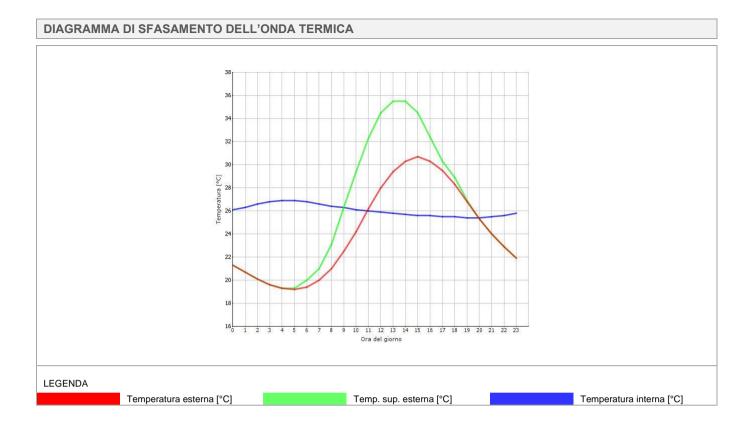
Massa della struttura per metro quadrato di superficie: 86 kg/m²

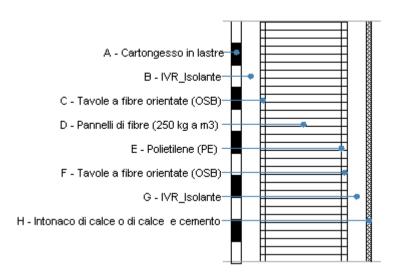
Valore minimo di massa superficiale: 230 kg/m 2

ESITO VERIFICA DI MASSA: OK

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

CONDIZIONI AL CONTORNO


Comune:	Inveruno	Colorazione:	<u>Chiaro</u>
Orientamento:	<u>s</u>	Mese massima insolazione:	luglio
Temp. media mese massima insolaz.:	24,3 °C	Temperatura massima estiva:	30,7 °C
Escursione giorno più caldo dell'anno:	11,5 °C	Irradian. mensile massima piano orizz.:	275,46 W/m ²


INERZIA TERMICA

Tempo sfasamento dell'onda termica:	15h 16'	Fattore di attenuazione:	0,0887
Capacità termica interna C1:	$34,2 \text{ kJ/(m}^2/\text{K})$	Capacità termica esterna C2:	24,9 kJ/(m ² /K)
Ammettenza interna oraria:	15,0 W/(m ² /K)	Ammettenza interna in modulo:	2,5 W/(m ² /K)
Ammettenza esterna oraria:	16,7 W/(m ² /K)	Ammettenza esterna in modulo:	1,8 W/(m ² /K)
Trasmittanza termica periodica Y:	0,017 W/(m ² K)	Classificazione struttura da normativa:	
Trasmitt. termica periodica limite Ylim:	0,100 W/(m ² K)		

ESITO VERIFICA DI INERZIA: OK

	Temperatura esterna nel giorno più caldo Te	Irradiazione solare nel giorno più caldo dell'anno le	Temp. superficiale esterna nel giorno più caldo Te,sup	Temperatura interna nel giorno più caldo Ti	
Ora	°C	W/m²	°C	°C	
0:00	21,26	0,00	21,26	26,07	
1:00	20,68	0,00	20,68	26,35	
2:00	20,11	0,00	20,11	26,60	
3:00	19,65	0,00	19,65	26,79	
4:00	19,30	0,00	19,30	26,89	
5:00	19,19	10,00	19,31	26,89	
6:00	19,42	49,00	20,01	26,80	
7:00	19,99	85,75	21,02	26,61	
8:00	21,03	173,00	23,10	26,43	
9:00	22,52	315,75	26,31	26,30	
10:00	24,25	432,75	29,44	26,12	
11:00	26,20	508,25	32,30	25,98	
12:00	28,04	534,25	34,45	25,87	
13:00	29,42	508,25	35,52	25,77	
14:00	30,34	432,75	35,54	25,68	
15:00	30,69	315,75	34,48	25,62	
16:00	30,34	173,00	32,42	25,57	
17:00	29,54	66,50	30,34	25,52	
18:00	28,27	49,50	28,87	25,48	
19:00	26,78	10,00	26,90	25,45	
20:00	25,28	0,00	25,28	25,45	
21:00	24,02	0,00	24,02	25,51	
22:00	22,87	0,00	22,87	25,60	
23:00	21,95	0,00	21,95	25,79	

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: Inveruno_CV01b

Note:

Tipologia:	<u>Parete</u>	Disposizione:	<u>Verticale</u>
Verso:	<u>Esterno</u>	Spessore:	371,0 mm
Trasmittanza U:	0,144 W/(m ² K)	Resistenza R:	6,968 (m ² K)/W
Massa superf.:	96 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Otracta	Spessore	Conduttività	Resistenza	Densità	Capacità term.	Fattore	Fattore
	Strato	s	λ	R	ρ	С	μа	μи
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-	-
Α	Cartongesso in lastre	25,0	0,210	0,119	900	1,30	8,7	8,7
В	IVR_Isolante	50,0	0,028	1,786	35	1,40	56,0	56,0
С	Tavole a fibre orientate (OSB)	15,0	0,130	0,115	650	1,70	50,0	30,0
D	Pannelli di fibre (250 kg a m3)	200,0	0,070	2,857	250	1,70	5,0	2,0
Е	Polietilene (PE)	1,0	0,350	0,003	950	2,30	54.054 ,1	54.054 ,1
F	Tavole a fibre orientate (OSB)	15,0	0,130	0,115	650	1,70	50,0	30,0
G	IVR_Isolante	50,0	0,028	1,786	35	1,40	56,0	56,0
Н	Intonaco di calce o di calce e cemento	15,0	0,900	0,017	1.800	0,84	16,7	16,7
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-		-	-
	TOTALE	371,0		6,968				

Conduttanza unitaria superficiale interna: 7,690 W/(m²K)

Resistenza unitaria superficiale interna: 0,130 (m²K)/W

Conduttanza unitaria superficiale esterna: 25,000 W/(m²K)

Resistenza unitaria superficiale esterna: 0,040 (m²K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	Inveruno	Zona climatica:	<u>E</u>
Trasmittanza della struttura U:	0,144 W/(m ² K)	Trasmittanza limite Ulim:	0,260 W/(m ² K)

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

ESITO VERIFICA DI TRASMITTANZA: -

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	<u>Inveruno</u>	Tipo di calcolo:	Classi di concentrazione		
Verso:	<u>Esterno</u>	Coeff. di correzione btr,x:			
Classe di adificio	Edifici con indice di affollamento non	Valuma interna V	3		
Classe di edificio:	noto	Volume interno V:	- m ³		
Produz. nota di vapore G:	- kg/h				

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	-	-0,1	84,9	0,5
febbraio	20,0	-	3,4	74,0	0,5
marzo	20,0	-	7,0	63,4	0,5
aprile	20,0	-	10,3	66,4	0,5
maggio	20,0	-	16,2	72,9	0,5
giugno	20,0	-	20,3	70,5	0,5
luglio	20,0	-	21,0	64,3	0,5
agosto	20,0	-	20,9	66,1	0,5
settembre	20,0	-	17,0	71,8	0,5
ottobre	20,0	-	11,4	90,7	0,5
novembre	20,0	-	5,9	94,7	0,5
dicembre	20,0	-	1,3	85,6	0,5

CONDIZIONE	Temperatura interna θi	Pressione parziale interna pi	Temperatura esterna θe	Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	-0,10	514,20
ESTIVA	20,00	1.615,60	21,00	1.597,60

	La struttura non è soggetta a fenomeni di condensa interstiziale.
	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 0 Pa.
X	La struttura è soggetta a fenomeni di condensa.
^	La quantità stagionale di vapore condensato è pari a 0,123 kg/m² (rievaporabile durante il periodo estivo).
X	La struttura non è soggetta a fenomeni di condensa superficiale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 570,974 Pa.

VERIFICA FORMAZIONE MUFFE SUPERFICIALI

CONDIZIONI AL CONTORNO INTERNE ED ESTERNE

Mese	Temperatura esterna Te °C	Pressione esterna Pe Pa	Variazione di pressione ΔP Pa	Pressione interna Pi Pa	Temperatura interna Ti °C	Umidità relativa interna φi %
ottobre	11,4	1221,38	405,3	1626.68	20	91
novembre	5,9	878,74	600,55	1479,29	20	95
dicembre	1,3	574,43	763,85	1338,28	20	86
gennaio	-0,1	514,17	810	1324,17	20	85
febbraio	3,4	576,19	689,3	1265,49	20	74
marzo	7,0	634,73	561,5	1196,23	20	63
aprile	10,3	831,79	444,35	1276,14	20	66

CALCOLO DEL FATTORE DI RISCHIO

La verifica della formazione di muffa è eseguita in maniera conforme a quanto riportato nella norma UNI EN ISO 13788

	Temperatura superficiale critica Tsi-critica	Fattore di rischio ammissibile frsi- amm
Mese	°C	-

ottobre	17,77	0,7408
novembre	16,27	0,7356
dicembre	14,71	0,7171
gennaio	14,55	0,7287
febbraio	13,85	0,6293
marzo	12,98	0,4602
aprile	13,98	0,3789

Riepilogo dei risultati:

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione

Fattore di resistenza superficiale fRsi: 0,7408 (mese di Ottobre)

Fattore di resistenza superficiale ammissibile massimo fRsiAmm: 0,9813

ESITO VERIFICA DI MUFFA: OK

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.324,2	1.265,5	1.196,2	1.276,1	1.577,5	1.766,8	1.662,1	1.700,1	1.596,5	1.626,7	1.479,3	1.338,3
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.321,4	1.263,1	1.194,3	1.274,6	1.576,7	1.766,5	1.661,9	1.699,9	1.595,7	1.625,3	1.477,2	1.335,6
	2.235,0	2.252,5	2.270,6	2.287,3	2.317,4	2.338,5	2.342,1	2.341,6	2.321,5	2.292,8	2.265,0	2.242,0
A-B	1.285,1	1.232,3	1.169,2	1.254,7	1.566,2	1.762,5	1.659,0	1.696,8	1.586,5	1.607,2	1.450,4	1.301,5
	1.611,3	1.721,2	1.841,1	1.957,3	2.181,2	2.349,7	2.379,5	2.375,2	2.213,2	1.997,4	1.803,7	1.654,5
B-C	1.275,4	1.224,0	1.162,4	1.249,4	1.563,3	1.761,4	1.658,2	1.696,0	1.584,0	1.602,3	1.443,2	1.292,3
	1.576,9	1.691,0	1.815,9	1.937,5	2.172,6	2.350,4	2.382,0	2.377,4	2.206,3	1.979,5	1.776,9	1.621,7
C-D	1.262,5	1.213,0	1.153,5	1.242,3	1.559,6	1.760,0	1.657,2	1.694,9	1.580,7	1.595,8	1.433,6	1.280,1
	906,3	1.077,4	1.282,5	1.499,8	1.969,9	2.368,3	2.442,9	2.432,2	2.042,7	1.579,1	1.216,4	971,6
D-E	563,3	618,0	668,8	858,8	1.356,8	1.682,9	1.601,5	1.636,2	1.402,5	1.246,0	915,2	620,8
	905,7	1.076,9	1.282,0	1.499,4	1.969,7	2.368,3	2.443,0	2.432,2	2.042,5	1.578,8	1.216,0	971,1
E-F	553,6	609,8	662,1	853,4	1.354,0	1.681,8	1.600,7	1.635,4	1.400,0	1.241,1	908,0	611,6
	885,0	1.056,9	1.263,7	1.483,8	1.961,9	2.369,1	2.445,5	2.434,5	2.036,2	1.564,2	1.197,1	950,6
F-G	517,4	578,9	637,0	833,6	1.343,5	1.677,8	1.597,9	1.632,3	1.390,8	1.223,0	881,1	577,5
	613,3	786,6	1.008,6	1.258,8	1.844,3	2.380,3	2.484,3	2.469,2	1.939,6	1.353,6	935,6	678,1
G-H	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	611,2	784,4	1.006,5	1.256,9	1.843,2	2.380,4	2.484,7	2.469,6	1.938,8	1.351,7	933,4	675,9
H-Add	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	605,5	779,2	1.001,3	1.252,2	1.840,6	2.380,7	2.485,6	2.470,4	1.936,6	1.347,3	928,2	670,7

TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	19,6	19,7	19,8	19,8	19,9	20,0	20,0	20,0	19,9	19,8	19,7	19,7
A-B	19,3	19,4	19,5	19,7	19,9	20,0	20,0	20,0	19,9	19,7	19,5	19,3
В-С	14,1	15,2	16,2	17,2	18,9	20,1	20,3	20,3	19,1	17,5	15,9	14,5
C-D	13,8	14,9	16,0	17,0	18,8	20,1	20,3	20,3	19,1	17,3	15,6	14,2
D-E	5,6	8,1	10,7	13,0	17,3	20,2	20,7	20,6	17,8	13,8	9,9	6,6
E-F	5,5	8,1	10,7	13,0	17,3	20,2	20,7	20,6	17,8	13,8	9,9	6,6
F-G	5,2	7,8	10,4	12,9	17,2	20,2	20,7	20,7	17,8	13,7	9,6	6,2
G-H	0,1	3,5	7,1	10,4	16,2	20,3	21,0	20,9	17,0	11,5	6,0	1,5
H-Add	0,0	3,5	7,1	10,4	16,2	20,3	21,0	20,9	17,0	11,4	6,0	1,4
Add-Esterno	-0,1	3,4	7,0	10,3	16,2	20,3	21,0	20,9	17,0	11,4	5,9	1,3

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. D/E												
Gc [Kg/m²]	0,0433	0,0149	-0,0157	-0,0303	-0,0499	-0,0716	0,0000	0,0000	0,0000	0,0020	0,0256	0,0375
Ma [Kg/m²]	0,1084	0,1233	0,1076	0,0773	0,0274	0,0000	0,0000	0,0000	0,0000	0,0020	0,0276	0,0651
Interf. E/F												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. F/G												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. G/H												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. H/I												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]												

gennaio - Interf. D/E. Formazione di condensa: 0,1084 kg/m² febbraio - Interf. D/E. Formazione di condensa: 0,1233 kg/m² marzo - Interf. D/E. Formazione di condensa: 0,1076 kg/m² aprile - Interf. D/E. Formazione di condensa: 0,0773 kg/m²

maggio - Interf. D/E. Formazione di condensa: 0,0274 kg/m² ottobre - Interf. D/E. Formazione di condensa: 0,0020 kg/m² novembre - Interf. D/E. Formazione di condensa: 0,0276 kg/m² dicembre - Interf. D/E. Formazione di condensa: 0,0651 kg/m² Mese condensazione massima: febbraio

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente Gc: 0,0433 (mese di gennaio) kg/m² nell'interfaccia D-E Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia Gc,max: 0,5000 kg/m² Quantità di vapore residuo Ma: 0,1233 (mese di febbraio) kg/m² nell'interfaccia D-E

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Interfaccia D-E - Formazione di condensa: 0,1233 kg/m²

DIAGRAMMI DI PRESSIONE E TEMPERATURA p2.500 p2.500 Fl^{2,500} 20_F 2000 2,000 2,000 1.500 1500 1.500 1,000 1,000 Febbraio Gennaio Marzo apile т*а*доја giugna 2.500 2,000 1,500 H1.500 H1.000 1,000 El₅₀₀ E]500 Aprile Maggio Giugno settemble lugia agasto 2.500 2000 1.500 1,000 E|₅₀₀ Luglio Agosto Settembre attable navem Die doemble 2.000 2,000 1.500 1500 1500 H1.000 H1.000 1,000 Ottobre Novembre Dicembre LEGENDA Temperatura [°C] Pressione del vapore [Pa] Press. di saturazione [Pa]

VERIFICA DI MASSA E INERZIA TERMICA

Il comportamento termico dinamico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13786.

Verifica di massa:

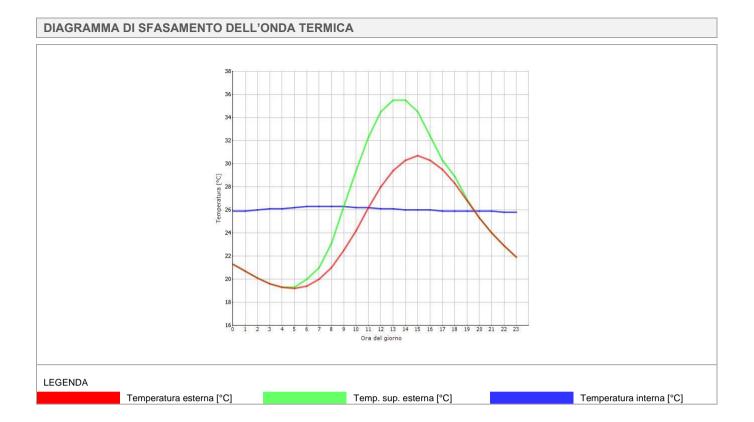
Massa della struttura per metro quadrato di superficie: 96 kg/m²

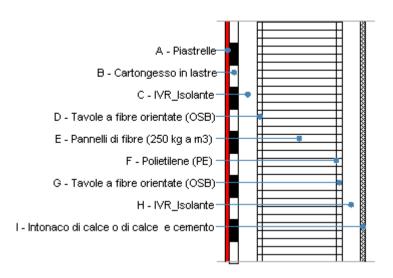
Valore minimo di massa superficiale: 230 kg/m 2

ESITO VERIFICA DI MASSA: OK

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

CONDIZIONI AL CONTORNO


Comune:	Inveruno	Colorazione:	<u>Chiaro</u>
Orientamento:	<u>s</u>	Mese massima insolazione:	luglio
Temp. media mese massima insolaz.:	24,3 °C	Temperatura massima estiva:	30,7 °C
Escursione giorno più caldo dell'anno:	11,5 °C	Irradian. mensile massima piano orizz.:	275,46 W/m ²


INERZIA TERMICA

Tempo sfasamento dell'onda termica:	18h 26'	Fattore di attenuazione:	0,0296
Capacità termica interna C1:	$27,3 \text{ kJ/(m}^2/\text{K})$	Capacità termica esterna C2:	24,9 kJ/(m ² /K)
Ammettenza interna oraria:	15,9 W/(m ² /K)	Ammettenza interna in modulo:	2,0 W/(m ² /K)
Ammettenza esterna oraria:	16,7 W/(m ² /K)	Ammettenza esterna in modulo:	1,8 W/(m ² /K)
Trasmittanza termica periodica Y:	0,004 W/(m ² K)	Classificazione struttura da normativa:	
Trasmitt. termica periodica limite Ylim:	0,100 W/(m ² K)		

ESITO VERIFICA DI INERZIA: OK

	Temperatura esterna nel giorno più caldo Te	Irradiazione solare nel giorno più caldo dell'anno le	Temp. superficiale esterna nel giorno più caldo Te,sup	Temperatura interna nel giorno più caldo Ti
Ora	°C	W/m²	°C	°C
0:00	21,26	0,00	21,26	25,87
1:00	20,68	0,00	20,68	25,90
2:00	20,11	0,00	20,11	25,96
3:00	19,65	0,00	19,65	26,06
4:00	19,30	0,00	19,30	26,15
5:00	19,19	10,00	19,31	26,23
6:00	19,42	49,00	20,01	26,30
7:00	19,99	85,75	21,02	26,33
8:00	21,03	173,00	23,10	26,33
9:00	22,52	315,75	26,31	26,30
10:00	24,25	432,75	29,44	26,24
11:00	26,20	508,25	32,30	26,17
12:00	28,04	534,25	34,45	26,13
13:00	29,42	508,25	35,52	26,07
14:00	30,34	432,75	35,54	26,02
15:00	30,69	315,75	34,48	25,99
16:00	30,34	173,00	32,42	25,95
17:00	29,54	66,50	30,34	25,93
18:00	28,27	49,50	28,87	25,91
19:00	26,78	10,00	26,90	25,89
20:00	25,28	0,00	25,28	25,87
21:00	24,02	0,00	24,02	25,86
22:00	22,87	0,00	22,87	25,85
23:00	21,95	0,00	21,95	25,85

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: Inveruno_CV01c

Note:

Tipologia:	<u>Parete</u>	Disposizione:	<u>Verticale</u>
Verso:	<u>Esterno</u>	Spessore:	381,0 mm
Trasmittanza U:	0,143 W/(m ² K)	Resistenza R:	6,978 (m ² K)/W
Massa superf.:	119 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore	Conduttività	Resistenza	Densità	Capacità term.	Fattore	Fattore
		S	λ	R	ρ	С	μа	μи
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-	-
Α	Piastrelle	10,0	1,000	0,010	2.300	0,84	213,2	999.99 9,0
В	Cartongesso in lastre	25,0	0,210	0,119	900	1,30	8,7	8,7
С	IVR_Isolante	50,0	0,028	1,786	35	1,40	56,0	56,0
D	Tavole a fibre orientate (OSB)	15,0	0,130	0,115	650	1,70	50,0	30,0
Е	Pannelli di fibre (250 kg a m3)	200,0	0,070	2,857	250	1,70	5,0	2,0
F	Polietilene (PE)	1,0	0,350	0,003	950	2,30	54.054 ,1	54.054
G	Tavole a fibre orientate (OSB)	15,0	0,130	0,115	650	1,70	50,0	30,0
Н	IVR_Isolante	50,0	0,028	1,786	35	1,40	56,0	56,0
ı	Intonaco di calce o di calce e cemento	15,0	0,900	0,017	1.800	0,84	16,7	16,7
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-	-	-	-
	TOTALE	381,0		6,978				

Conduttanza unitaria superficiale interna: 7,690 W/(m²K)

Resistenza unitaria superficiale interna: 0,130 (m²K)/W

Conduttanza unitaria superficiale esterna: 25,000 W/(m²K)

Resistenza unitaria superficiale esterna: 0,040 (m²K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	<u>Inveruno</u>	Zona climatica:	<u>E</u>
Trasmittanza della struttura U:	0,143 W/(m ² K)	Trasmittanza limite Ulim:	0,260 W/(m ² K)

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

ESITO VERIFICA DI TRASMITTANZA: -

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	Inveruno	Tipo di calcolo:	Classi di concentrazione
Verso:	<u>Esterno</u>	Coeff. di correzione btr,x:	
Classe di edificio:	Edifici con indice di affollamento non	Volume interno V:	- m ³
Classe di edilicio.	noto	volume interno v.	- 1110
Produz. nota di vapore G:	- kg/h		

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	-	-0,1	84,9	0,5
febbraio	20,0	-	3,4	74,0	0,5
marzo	20,0	-	7,0	63,4	0,5
aprile	20,0	-	10,3	66,4	0,5
maggio	20,0	-	16,2	72,9	0,5
giugno	20,0	-	20,3	70,5	0,5
luglio	20,0	-	21,0	64,3	0,5
agosto	20,0	-	20,9	66,1	0,5
settembre	20,0	-	17,0	71,8	0,5
ottobre	20,0	-	11,4	90,7	0,5
novembre	20,0	-	5,9	94,7	0,5
dicembre	20,0	-	1,3	85,6	0,5

CONDIZIONE	Temperatura interna θi	Pressione parziale interna pi	Temperatura esterna θe	Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	-0,10	514,20
ESTIVA	20,00	1.615,60	21,00	1.597,60

	La struttura non è soggetta a fenomeni di condensa interstiziale.
	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 0 Pa.
X	La struttura è soggetta a fenomeni di condensa.
^	La quantità stagionale di vapore condensato è pari a 0,080 kg/m² (rievaporabile durante il periodo estivo).
X	La struttura non è soggetta a fenomeni di condensa superficiale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 570,973 Pa.

VERIFICA FORMAZIONE MUFFE SUPERFICIALI

CONDIZIONI AL CONTORNO INTERNE ED ESTERNE

	Temperatura esterna Te	Pressione esterna Pe	Variazione di pressione ΔP	Pressione interna Pi	Temperatura interna Ti	Umidità relativa interna φi
Mese	°C	Pa	Pa	Pa	°C	%
ottobre	11,4	1221,38	405,3	1626,68	20	91
novembre	5,9	878,74	600,55	1479,29	20	95
dicembre	1,3	574,43	763,85	1338,28	20	86
gennaio	-0,1	514,17	810	1324,17	20	85
febbraio	3,4	576,19	689,3	1265,49	20	74
marzo	7,0	634,73	561,5	1196,23	20	63
aprile	10,3	831,79	444,35	1276,14	20	66

CALCOLO DEL FATTORE DI RISCHIO

La verifica della formazione di muffa è eseguita in maniera conforme a quanto riportato nella norma UNI EN ISO 13788

	Temperatura superficiale critica T _S i-critica	Fattore di rischio ammissibile frsi- amm
Mese	°C	-

ottobre	17,77	0,7408
novembre	16,27	0,7356
dicembre	14,71	0,7171
gennaio	14,55	0,7287
febbraio	13,85	0,6293
marzo	12,98	0,4602
aprile	13,98	0,3789

Riepilogo dei risultati:

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione

Fattore di resistenza superficiale fRsi: 0,7408 (mese di Ottobre)

Fattore di resistenza superficiale ammissibile massimo fRsiAmm: 0,9814

ESITO VERIFICA DI MUFFA: OK

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.324,2	1.265,5	1.196,2	1.276,1	1.577,5	1.766,8	1.662,1	1.700,1	1.596,5	1.626,7	1.479,3	1.338,3
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.297,5	1.242,8	1.177,7	1.261,5	1.569,7	1.763,8	1.660,0	1.697,9	1.589,7	1.613,3	1.459,5	1.313,1
	2.279,2	2.289,2	2.299,5	2.308,9	2.325,9	2.337,8	2.339,9	2.339,6	2.328,3	2.312,1	2.296,3	2.283,2
A-B	1.294,8	1.240,5	1.175,9	1.260,0	1.568,9	1.763,5	1.659,8	1.697,6	1.589,0	1.612,0	1.457,5	1.310,6
	2.231,2	2.249,3	2.268,0	2.285,4	2.316,6	2.338,6	2.342,3	2.341,8	2.320,9	2.291,2	2.262,3	2.238,4
B-C	1.259,8	1.210,7	1.151,6	1.240,8	1.558,8	1.759,7	1.657,0	1.694,7	1.580,0	1.594,5	1.431,5	1.277,5
	1.609,2	1.719,3	1.839,5	1.956,1	2.180,6	2.349,7	2.379,7	2.375,4	2.212,8	1.996,3	1.802,0	1.652,5
C-D	1.250,4	1.202,7	1.145,1	1.235,7	1.556,1	1.758,6	1.656,2	1.693,9	1.577,6	1.589,8	1.424,6	1.268,7
	1.574,8	1.689,2	1.814,4	1.936,3	2.172,1	2.350,4	2.382,1	2.377,6	2.205,9	1.978,5	1.775,3	1.619,7
D-E	1.237,9	1.192,0	1.136,4	1.228,8	1.552,4	1.757,3	1.655,2	1.692,9	1.574,5	1.583,5	1.415,3	1.256,9
	905,8	1.076,9	1.282,0	1.499,5	1.969,7	2.368,3	2.443,0	2.432,2	2.042,5	1.578,8	1.216,0	971,1
E-F	561,7	616,6	667,7	857,9	1.356,4	1.682,7	1.601,4	1.636,1	1.402,1	1.245,2	914,0	619,3
	905,2	1.076,4	1.281,6	1.499,1	1.969,6	2.368,4	2.443,1	2.432,3	2.042,4	1.578,4	1.215,5	970,6
F-G	552,3	608,7	661,2	852,7	1.353,6	1.681,6	1.600,6	1.635,3	1.399,7	1.240,5	907,0	610,4
	884,5	1.056,5	1.263,3	1.483,4	1.961,7	2.369,1	2.445,6	2.434,5	2.036,0	1.563,9	1.196,6	950,1
G-H	517,3	578,9	636,9	833,5	1.343,5	1.677,8	1.597,8	1.632,3	1.390,8	1.222,9	881,1	577,4
	613,3	786,6	1.008,6	1.258,8	1.844,2	2.380,3	2.484,3	2.469,2	1.939,6	1.353,6	935,6	678,1
H-I	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	611,2	784,4	1.006,5	1.256,9	1.843,2	2.380,4	2.484,7	2.469,6	1.938,8	1.351,7	933,4	675,9
I-Add	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	605,5	779,2	1.001,3	1.252,2	1.840,6	2.380,7	2.485,6	2.470,4	1.936,6	1.347,3	928,2	670,7

TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	19,6	19,7	19,8	19,8	19,9	20,0	20,0	20,0	19,9	19,8	19,7	19,7
A-B	19,6	19,7	19,7	19,8	19,9	20,0	20,0	20,0	19,9	19,8	19,7	19,6
B-C	19,3	19,4	19,5	19,6	19,9	20,0	20,0	20,0	19,9	19,7	19,5	19,3
C-D	14,1	15,1	16,2	17,2	18,9	20,1	20,3	20,3	19,1	17,5	15,9	14,5
D-E	13,8	14,9	16,0	17,0	18,8	20,1	20,3	20,3	19,1	17,3	15,6	14,2
E-F	5,5	8,1	10,7	13,0	17,3	20,2	20,7	20,6	17,8	13,8	9,9	6,6
F-G	5,5	8,1	10,6	13,0	17,3	20,2	20,7	20,6	17,8	13,8	9,9	6,5
G-H	5,2	7,8	10,4	12,9	17,2	20,2	20,7	20,7	17,8	13,7	9,6	6,2
H-I	0,1	3,5	7,1	10,4	16,2	20,3	21,0	20,9	17,0	11,5	6,0	1,5
I-Add	0,0	3,5	7,1	10,4	16,2	20,3	21,0	20,9	17,0	11,4	6,0	1,4
Add-Esterno	-0,1	3,4	7,0	10,3	16,2	20,3	21,0	20,9	17,0	11,4	5,9	1,3

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. E/F												
Gc [Kg/m²]	0,0289	0,0090	-0,0127	-0,0228	-0,0363	-0,0514	0,0000	0,0000	0,0000	0,0004	0,0168	0,0248
Ma [Kg/m²]	0,0709	0,0799	0,0672	0,0445	0,0082	0,0000	0,0000	0,0000	0,0000	0,0004	0,0172	0,0420
Interf. F/G												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. G/H												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. H/I												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. I/J												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]												

gennaio - Interf. E/F. Formazione di condensa: 0,0709 kg/m² febbraio - Interf. E/F. Formazione di condensa: 0,0799 kg/m² marzo - Interf. E/F. Formazione di condensa: 0,0672 kg/m² aprile - Interf. E/F. Formazione di condensa: 0,0445 kg/m² maggio - Interf. E/F. Formazione di condensa: 0,0082 kg/m² ottobre - Interf. E/F. Formazione di condensa: 0,0084 kg/m² novembre - Interf. E/F. Formazione di condensa: 0,0172 kg/m² dicembre - Interf. E/F. Formazione di condensa: 0,0420 kg/m² Mese condensazione massima: febbraio

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente Gc: 0,0289 (mese di gennaio) kg/m² nell'interfaccia E-F Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia Gc,max: 0,5000 kg/m² Quantità di vapore residuo Ma: 0,0799 (mese di febbraio) kg/m² nell'interfaccia E-F

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Interfaccia E-F - Formazione di condensa: 0,0799 kg/m²

DIAGRAMMI DI PRESSIONE E TEMPERATURA Fl^{2,500} p2.500 p2.500 20_F 2000 2,000 2,000 1.500 1500 1,500 1,000 1,000 Febbraio Gennaio Marzo арі le т*а*доја giugna 2.500 2,000 1,500 H1.500 H1.000 1,000 El₅₀₀ El₅₀₀ Aprile Maggio Giugno settemble lugio agasto 2.500 2000 1.500 1,000 E|₅₀₀ Luglio Agosto Settembre dæmbe attable navem Die 2,000 2,000 1.500 1500 1500 H1.000 1,000 H1.000 Ottobre Novembre Dicembre LEGENDA Temperatura [°C] Pressione del vapore [Pa] Press. di saturazione [Pa]

VERIFICA DI MASSA E INERZIA TERMICA

Il comportamento termico dinamico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13786.

Verifica di massa:

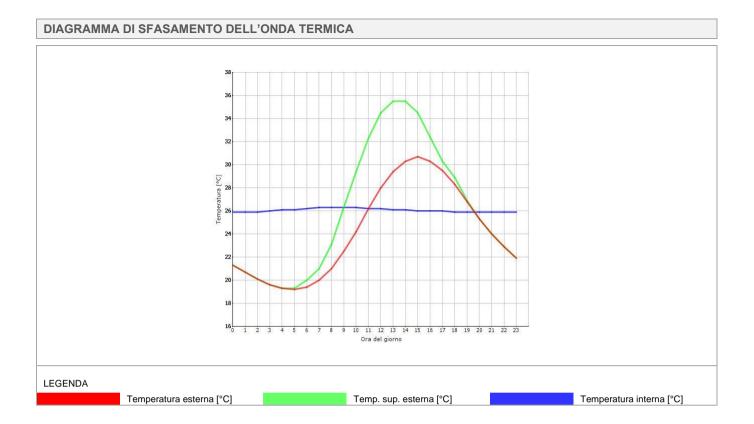
Massa della struttura per metro quadrato di superficie: 119 kg/m²

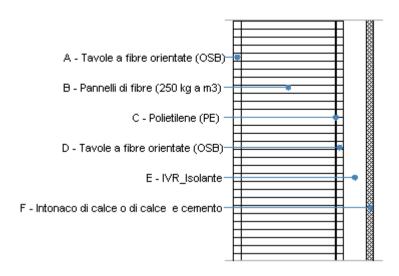
Valore minimo di massa superficiale: 230 kg/m 2

ESITO VERIFICA DI MASSA: OK

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

CONDIZIONI AL CONTORNO


Comune:	Inveruno	Colorazione:	<u>Chiaro</u>
Orientamento:	<u>s</u>	Mese massima insolazione:	luglio
Temp. media mese massima insolaz.:	24,3 °C	Temperatura massima estiva:	30,7 °C
Escursione giorno più caldo dell'anno:	11,5 °C	Irradian. mensile massima piano orizz.:	275,46 W/m ²


INERZIA TERMICA

Tempo sfasamento dell'onda termica:	19h 06'	Fattore di attenuazione:	0,0278
Capacità termica interna C1:	41,4 kJ/(m ² /K)	Capacità termica esterna C2:	24,9 kJ/(m ² /K)
Ammettenza interna oraria:	15,7 W/(m ² /K)	Ammettenza interna in modulo:	3,0 W/(m ² /K)
Ammettenza esterna oraria:	16,7 W/(m ² /K)	Ammettenza esterna in modulo:	1,8 W/(m ² /K)
Trasmittanza termica periodica Y:	0,004 W/(m ² K)	Classificazione struttura da normativa:	
Trasmitt. termica periodica limite Ylim:	0,100 W/(m ² K)		

ESITO VERIFICA DI INERZIA: OK

	Temperatura esterna nel giorno più caldo Te	Irradiazione solare nel giorno più caldo dell'anno le	Temp. superficiale esterna nel giorno più caldo Te,sup	Temperatura interna nel giorno più caldo Ti	
Ora	°C	W/m²	°C	°C	
0:00	21,26	0,00	21,26	25,86	
1:00	20,68	0,00	20,68	25,88	
2:00	20,11	0,00	20,11	25,91	
3:00	19,65	0,00	19,65	25,97	
4:00	19,30	0,00	19,30	26,05	
5:00	19,19	10,00	19,31	26,14	
6:00	19,42	49,00	20,01	26,22	
7:00	19,99	85,75 21,02 173,00 23,10		26,28	
8:00	21,03			26,31	
9:00	22,52	315,75	26,31	26,31	
10:00	24,25	432,75	29,44	26,28	
11:00	26,20	508,25	32,30	26,22	
12:00	28,04	534,25	34,45	26,17	
13:00	29,42	508,25	35,52	26,13	
14:00	30,34	432,75	35,54	26,07	
15:00	30,69	315,75	34,48	26,03	
16:00	30,34	173,00	32,42	25,99	
17:00	29,54	66,50	30,34	25,96	
18:00	28,27	49,50	28,87	25,93	
19:00	26,78	10,00	26,90	25,91	
20:00	25,28	0,00	25,28	25,90	
21:00	24,02	0,00	24,02	25,88	
22:00	22,87	0,00	22,87	25,87	
23:00	21,95	0,00	21,95	25,86	

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: Inveruno_CV01d

Note:

Tipologia:	<u>Parete</u>	Disposizione:	<u>Verticale</u>
Verso:	<u>Esterno</u>	Spessore:	<u>296,0</u> mm
Trasmittanza U:	0,198 W/(m ² K)	Resistenza R:	5,063 (m ² K)/W
Massa superf.:	72 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore	Conduttività	Resistenza	Densità	Capacità term.	Fattore	Fattore
		s	λ	R	ρ	С	μа	μи
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-	-
Α	Tavole a fibre orientate (OSB)	15,0	0,130	0,115	650	1,70	50,0	30,0
В	Pannelli di fibre (250 kg a m3)	200,0	0,070	2,857	250	1,70	5,0	2,0
С	Polietilene (PE)	1,0	0,350	0,003	950	2,30	54.054 ,1	54.054 ,1
D	Tavole a fibre orientate (OSB)	15,0	0,130	0,115	650	1,70	50,0	30,0
Е	IVR_Isolante	50,0	0,028	1,786	35	1,40	56,0	56,0
F	Intonaco di calce o di calce e cemento	15,0	0,900	0,017	1.800	0,84	16,7	16,7
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-		-	-
	TOTALE	296,0		5,063				

Conduttanza unitaria superficiale interna: 7,690 W/(m²K)

Resistenza unitaria superficiale interna: 0,130 (m²K)/W

Conduttanza unitaria superficiale esterna: 25,000 W/(m²K)

Resistenza unitaria superficiale esterna: 0,040 (m²K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	<u>Inveruno</u>	Zona climatica:	<u>E</u>
Trasmittanza della struttura U:	0,198 W/(m ² K)	Trasmittanza limite Ulim:	0,260 W/(m ² K)

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

ESITO VERIFICA DI TRASMITTANZA: -

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	Inveruno	Tipo di calcolo:	Classi di concentrazione	
Verso:	<u>Esterno</u>	Coeff. di correzione btr,x:		
Classe di edificio:	Edifici con indice di affollamento non	Volume interno V:	- m3	
Classe di edilicio.	noto	volume interno v.	- Mo	
Produz. nota di vapore G:	- kg/h			

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	-	-0,1	84,9	0,5
febbraio	20,0	-	3,4	74,0	0,5
marzo	20,0	-	7,0	63,4	0,5
aprile	20,0	-	10,3	66,4	0,5
maggio	20,0	-	16,2	72,9	0,5
giugno	20,0	-	20,3	70,5	0,5
luglio	20,0	-	21,0	64,3	0,5
agosto	20,0	-	- 20,9	66,1	0,5
settembre	20,0	-	17,0	71,8	0,5
ottobre	20,0	-	11,4	90,7	0,5
novembre	20,0	-	5,9	94,7	0,5
dicembre	20,0	-	1,3	85,6	0,5

CONDIZIONE	Temperatura interna θi	Pressione parziale interna pi	Temperatura esterna θe	Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	-0,10	514,20
ESTIVA	20,00	1.615,60	21,00	1.597,60

	La struttura non è soggetta a fenomeni di condensa interstiziale.
	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 0 Pa.
X	La struttura è soggetta a fenomeni di condensa.
^	La quantità stagionale di vapore condensato è pari a 0,188 kg/m² (rievaporabile durante il periodo estivo).
X	La struttura non è soggetta a fenomeni di condensa superficiale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 571,279 Pa.

VERIFICA FORMAZIONE MUFFE SUPERFICIALI

CONDIZIONI AL CONTORNO INTERNE ED ESTERNE

	Temperatura esterna Te	Pressione esterna Pe	Variazione di pressione ΔP	Pressione interna Pi	Temperatura interna Ti	Umidità relativa interna φi
Mese	°C	Pa	Pa	Pa	°C	%
ottobre	11,4	1221,38	405,3	1626,68	20	91
novembre	5,9	878,74	600,55	1479,29	20	95
dicembre	1,3	574,43	763,85	1338,28	20	86
gennaio	-0,1	514,17	810	1324,17	20	85
febbraio	3,4	576,19	689,3	1265,49	20	74
marzo	7,0	634,73	561,5	1196,23	20	63
aprile	10,3	831,79	444,35	1276,14	20	66

CALCOLO DEL FATTORE DI RISCHIO

La verifica della formazione di muffa è eseguita in maniera conforme a quanto riportato nella norma UNI EN ISO 13788

	Temperatura superficiale critica Tsi-critica	Fattore di rischio ammissibile frsi- amm
Mese	°C	-

ottobre	17,77	0,7408
novembre	16,27	0,7356
dicembre	14,71	0,7171
gennaio	14,55	0,7287
febbraio	13,85	0,6293
marzo	12,98	0,4602
aprile	13,98	0,3789

Riepilogo dei risultati:

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione

Fattore di resistenza superficiale fRsi: 0,7408 (mese di Ottobre)

Fattore di resistenza superficiale ammissibile massimo fRsiAmm: 0,9743

ESITO VERIFICA DI MUFFA: OK

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.324,2	1.265,5	1.196,2	1.276,1	1.577,5	1.766,8	1.662,1	1.700,1	1.596,5	1.626,7	1.479,3	1.338,3
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.314,0	1.256,8	1.189,2	1.270,5	1.574,5	1.765,7	1.661,3	1.699,3	1.593,9	1.621,6	1.471,7	1.328,7
	2.199,7	2.223,1	2.247,3	2.269,8	2.310,4	2.339,1	2.344,0	2.343,3	2.316,0	2.277,3	2.239,9	2.209,0
A-B	1.300,4	1.245,3	1.179,7	1.263,1	1.570,6	1.764,2	1.660,2	1.698,1	1.590,4	1.614,8	1.461,7	1.315,9
	1.049,3	1.213,2	1.405,0	1.603,6	2.020,6	2.363,7	2.427,1	2.417,9	2.083,9	1.675,0	1.343,7	1.112,4
B-C	565,8	620,1	670,5	860,1	1.357,5	1.683,1	1.601,7	1.636,4	1.403,1	1.247,2	917,0	623,1
	1.048,5	1.212,5	1.404,3	1.603,0	2.020,3	2.363,7	2.427,2	2.418,0	2.083,7	1.674,5	1.343,0	1.111,6
C-D	555,6	611,5	663,5	854,5	1.354,6	1.682,0	1.600,9	1.635,5	1.400,5	1.242,1	909,5	613,5
	1.016,1	1.182,0	1.377,1	1.580,2	2.009,3	2.364,7	2.430,6	2.421,1	2.074,7	1.653,4	1.314,7	1.079,9
D-E	517,6	579,1	637,1	833,7	1.343,6	1.677,8	1.597,9	1.632,3	1.390,8	1.223,1	881,3	577,6
	616,1	789,5	1.011,4	1.261,3	1.845,6	2.380,2	2.483,9	2.468,8	1.940,8	1.355,9	938,4	680,9
E-F	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	613,1	786,4	1.008,4	1.258,6	1.844,1	2.380,4	2.484,4	2.469,3	1.939,6	1.353,4	935,4	677,9
F-Add	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	605,5	779,2	1.001,3	1.252,2	1.840,6	2.380,7	2.485,6	2.470,4	1.936,6	1.347,3	928,2	670,7

TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	19,5	19,6	19,7	19,8	19,9	20,0	20,0	20,0	19,9	19,8	19,6	19,5
A-B	19,0	19,2	19,4	19,5	19,8	20,0	20,0	20,0	19,9	19,6	19,3	19,1
B-C	7,7	9,8	12,0	14,1	17,7	20,2	20,6	20,6	18,2	14,7	11,4	8,5
C-D	7,7	9,8	12,0	14,1	17,7	20,2	20,6	20,6	18,2	14,7	11,4	8,5
D-E	7,2	9,4	11,7	13,8	17,6	20,2	20,6	20,6	18,1	14,5	11,0	8,1
E-F	0,1	3,6	7,1	10,4	16,2	20,3	21,0	20,9	17,0	11,5	6,1	1,5
F-Add	0,1	3,5	7,1	10,4	16,2	20,3	21,0	20,9	17,0	11,5	6,0	1,4
Add-Esterno	-0,1	3,4	7,0	10,3	16,2	20,3	21,0	20,9	17,0	11,4	5,9	1,3

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. B/C												
Gc [Kg/m²]	0,0792	0,0091	-0,0710	-0,1039	-0,1419	0,0000	0,0000	0,0000	0,0000	0,0000	0,0360	0,0642
Ma [Kg/m²]	0,1793	0,1885	0,1174	0,0135	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0360	0,1002
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. E/F												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. F/G												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]												

gennaio - Interf. B/C. Formazione di condensa: $0,1793~kg/m^2$ febbraio - Interf. B/C. Formazione di condensa: $0,1885~kg/m^2$ marzo - Interf. B/C. Formazione di condensa: $0,1174~kg/m^2$

aprile - Interf. B/C. Formazione di condensa: 0,0135 kg/m² novembre - Interf. B/C. Formazione di condensa: 0,0360 kg/m²

dicembre - Interf. B/C. Formazione di condensa: $0,1002 \text{ kg/m}^2$

Mese condensazione massima: febbraio

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia $G_{c,max}$: 0,5000 kg/m² Quantità di vapore residuo Ma: 0,1885 (mese di febbraio) kg/m² nell'interfaccia B-C

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Interfaccia B-C - Formazione di condensa: 0,1885 kg/m²

DIAGRAMMI DI PRESSIONE E TEMPERATURA Fl^{2,500} p2.500 p2.500 20_F 2,000 2,000 H2.000 101 1.500 1500 1.500 51 01 -51 1,000 1,000 Febbraio Gennaio Marzo apile т*а*доја giugna 2.500 2.000 2,000 5 1,500 H1.500 H1.000 H1.000 El₅₀₀ El₅₀₀ Aprile Maggio Giugno lugio settemble agasto 2.500 2000 1.500 5 0 -5 1,000 E|₅₀₀ Luglio Agosto Settembre dæmbe attable navem Die 10 2.000 2,000 5 1.500 1500 1500 5 0 1 -5 H1.000 H1.000 1,000 Ottobre Novembre Dicembre LEGENDA Temperatura [°C] Pressione del vapore [Pa] Press. di saturazione [Pa]

VERIFICA DI MASSA E INERZIA TERMICA

Il comportamento termico dinamico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13786.

Verifica di massa:

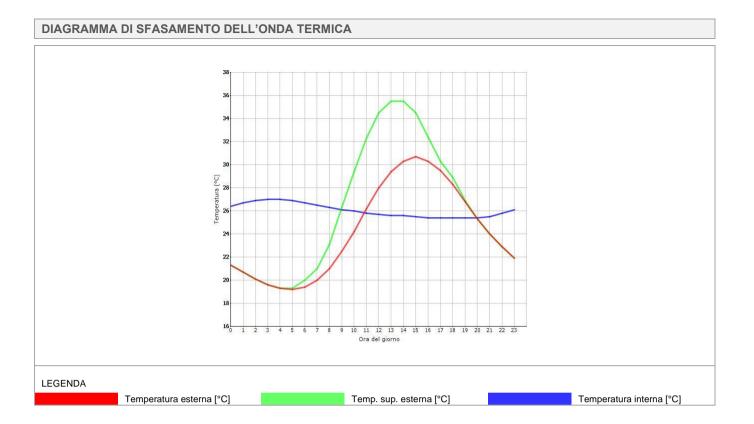
Massa della struttura per metro quadrato di superficie: 72 kg/m^2

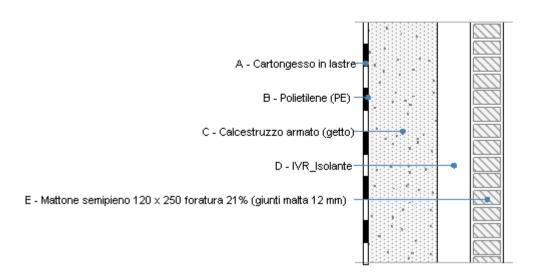
Valore minimo di massa superficiale: 230 kg/m 2

ESITO VERIFICA DI MASSA: OK

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

CONDIZIONI AL CONTORNO


Comune:	Inveruno	Colorazione:	<u>Chiaro</u>
Orientamento:	<u>s</u>	Mese massima insolazione:	luglio
Temp. media mese massima insolaz.:	24,3 °C	Temperatura massima estiva:	30,7 °C
Escursione giorno più caldo dell'anno:	11,5 °C	Irradian. mensile massima piano orizz.:	275,46 W/m ²


INERZIA TERMICA

Tempo sfasamento dell'onda termica:	14h 20'	Fattore di attenuazione:	0,1009
Capacità termica interna C1:	25,8 kJ/(m ² /K)	Capacità termica esterna C2:	24,9 kJ/(m ² /K)
Ammettenza interna oraria:	15,1 W/(m ² /K)	Ammettenza interna in modulo:	1,9 W/(m ² /K)
Ammettenza esterna oraria:	16,7 W/(m ² /K)	Ammettenza esterna in modulo:	1,8 W/(m ² /K)
Trasmittanza termica periodica Y:	0,020 W/(m ² K)	Classificazione struttura da normativa:	
Trasmitt. termica periodica limite Ylim:	0,100 W/(m ² K)		

ESITO VERIFICA DI INERZIA: OK

	Temperatura esterna nel giorno più caldo Te	Irradiazione solare nel giorno più caldo dell'anno le	Temp. superficiale esterna nel giorno più caldo Te,sup	Temperatura interna nel giorno più caldo Ti
Ora	°C	W/m²	°C	<u>°C</u>
0:00	21,26	0,00	21,26	26,39
1:00	20,68	0,00	20,68	26,68
2:00	20,11	0,00	20,11	26,90
3:00	19,65	0,00	19,65	27,00
4:00	19,30	0,00	19,30	27,00
5:00	19,19	10,00	19,31	26,90
6:00	19,42	49,00	20,01	26,69
7:00	19,99	85,75	21,02	26,48
8:00	21,03	173,00	23,10	26,33
9:00	22,52	315,75	26,31	26,13
10:00	24,25	432,75	29,44	25,97
11:00	26,20	508,25	32,30	25,84
12:00	28,04	534,25	34,45	25,73
13:00	29,42	508,25	35,52	25,63
14:00	30,34	432,75	35,54	25,56
15:00	30,69	315,75	34,48	25,51
16:00	30,34	173,00	32,42	25,45
17:00	29,54	66,50	30,34	25,40
18:00	28,27	49,50	28,87	25,37
19:00	26,78	10,00	26,90	25,37
20:00	25,28	0,00	25,28	25,44
21:00	24,02	0,00	24,02	25,54
22:00	22,87	0,00	22,87	25,75
23:00	21,95	0,00	21,95	26,07

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: Inveruno_CV02a

Note:

Tipologia:	<u>Parete</u>	Disposizione:	<u>Verticale</u>
Verso:	<u>Esterno</u>	Spessore:	<u>506,0</u> mm
Trasmittanza U:	0,206 W/(m ² K)	Resistenza R:	4,851 (m ² K)/W
Massa superf.:	835 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore	Conduttività	Resistenza	Densità	Capacità term.	Fattore	Fattore
	Sualo	s	λ	R	ρ	С	μа	μи
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-	-
Α	Cartongesso in lastre	15,0	0,210	0,071	900	1,30	8,7	8,7
В	Polietilene (PE)	1,0	0,350	0,003	950	2,30	54.054 ,1	54.054 ,1
С	Calcestruzzo armato (getto)	250,0	1,910	0,131	2.400	1,00	0,0	999.99 9,0
D	IVR_Isolante	120,0	0,028	4,286	35	1,40	56,0	56,0
E	Mattone semipieno 120 x 250 foratura 21% (giunti malta 12 mm)	120,0	0,632	0,190	1.800	1,00	10,0	5,0
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-	-	-	_
	TOTALE	506.0		4.851				

Conduttanza unitaria superficiale interna: 7,690 W/(m²K)

Resistenza unitaria superficiale interna: 0,130 (m²K)/W

Conduttanza unitaria superficiale esterna: 25,000 W/(m²K)

Resistenza unitaria superficiale esterna: 0,040 (m²K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	<u>Inveruno</u>	Zona climatica:	<u>E</u>
Trasmittanza della struttura U:	0,206 W/(m ² K)	Trasmittanza limite Ulim:	0,260 W/(m ² K)

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

ESITO VERIFICA DI TRASMITTANZA: -

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	<u>Inveruno</u>	Tipo di calcolo:	Classi di concentrazione
Verso:	<u>Esterno</u>	Coeff. di correzione btr,x:	
Classe di edificio:	Edifici con indice di affollamento non	Volume interno V:	_{- m} 3
Classe di edilicio.	noto	volume interno v.	- 1110
Produz. nota di vapore G:	- kg/h		

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	-	-0,1	84,9	0,5
febbraio	20,0	-	3,4	74,0	0,5
marzo	20,0	-	7,0	63,4	0,5
aprile	20,0	-	10,3	66,4	0,5
maggio	20,0	-	16,2	72,9	0,5
giugno	20,0	-	20,3	70,5	0,5
luglio	20,0	-	21,0	64,3	0,5
agosto	20,0	-	20,9	66,1	0,5
settembre	20,0	-	17,0	71,8	0,5
ottobre	20,0	-	11,4	90,7	0,5
novembre	20,0	-	5,9	94,7	0,5
dicembre	20,0	-	1,3	85,6	0,5

CONDIZIONE	Temperatura interna θi	Pressione parziale interna pi	Temperatura esterna θe	Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	-0,10	514,20
ESTIVA	20,00	1.615,60	21,00	1.597,60

X	La struttura non è soggetta a fenomeni di condensa interstiziale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 571,328 Pa.
	La struttura è soggetta a fenomeni di condensa.
	La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).
×	La struttura non è soggetta a fenomeni di condensa superficiale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 571,328 Pa.

VERIFICA FORMAZIONE MUFFE SUPERFICIALI

CONDIZIONI AL CONTORNO INTERNE ED ESTERNE

Mass	Temperatura esterna Te	Pressione esterna Pe	Variazione di pressione ΔP	Pressione interna Pi	Temperatura interna Ti	Umidità relativa interna φi
Mese	°C	Pa	Pa	Pa	°C	%
ottobre	11,4	1221,38	405,3	1626,68	20	91
novembre	5,9	878,74	600,55	1479,29	20	95
dicembre	1,3	574,43	763,85	1338,28	20	86
gennaio	-0,1	514,17	810	1324,17	20	85
febbraio	3,4	576,19	689,3	1265,49	20	74
marzo	7,0	634,73	561,5	1196,23	20	63
aprile	10,3	831,79	444,35	1276,14	20	66

CALCOLO DEL FATTORE DI RISCHIO

La verifica della formazione di muffa è eseguita in maniera conforme a quanto riportato nella norma UNI EN ISO 13788

	Temperatura superficiale critica Tsi-critica	Fattore di rischio ammissibile frsi- amm
Mese	°C	-

ottobre	17,77	0,7408
novembre	16,27	0,7356
dicembre	14,71	0,7171
gennaio	14,55	0,7287
febbraio	13,85	0,6293
marzo	12,98	0,4602
aprile	13,98	0,3789

Riepilogo dei risultati:

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione

Fattore di resistenza superficiale fRsi: 0,7408 (mese di Ottobre)

Fattore di resistenza superficiale ammissibile massimo fRsiAmm: 0,9732

ESITO VERIFICA DI MUFFA: OK

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.324,2	1.265,5	1.196,2	1.276,1	1.577,5	1.766,8	1.662,1	1.700,1	1.596,5	1.626,7	1.479,3	1.338,3
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.322,5	1.264,0	1.195,0	1.275,2	1.577,0	1.766,6	1.662,0	1.700,0	1.596,0	1.625,8	1.478,0	1.336,7
	2.218,9	2.239,1	2.260,0	2.279,3	2.314,2	2.338,8	2.343,0	2.342,4	2.319,0	2.285,8	2.253,6	2.226,9
A-B	617,5	664,1	706,3	888,5	1.372,5	1.688,8	1.605,8	1.640,7	1.416,3	1.273,1	955,3	671,8
	2.217,3	2.237,7	2.258,9	2.278,5	2.313,9	2.338,8	2.343,1	2.342,4	2.318,7	2.285,1	2.252,4	2.225,4
B-C	617,5	664,1	706,3	888,5	1.372,5	1.688,8	1.605,8	1.640,7	1.416,3	1.273,1	955,3	671,8
	2.143,4	2.176,1	2.210,1	2.241,7	2.299,2	2.340,0	2.347,0	2.346,0	2.307,1	2.252,4	2.199,7	2.156,4
C-D	529,8	589,5	645,6	840,4	1.347,1	1.679,2	1.598,8	1.633,4	1.393,9	1.229,2	890,3	589,2
	649,5	823,6	1.044,5	1.291,2	1.861,9	2.378,6	2.478,4	2.463,9	1.954,2	1.384,1	972,1	714,8
D-E	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	613,4	786,7	1.008,7	1.258,9	1.844,3	2.380,3	2.484,3	2.469,2	1.939,7	1.353,6	935,7	678,2
E-Add	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	605,5	779,2	1.001,3	1.252,2	1.840,6	2.380,7	2.485,6	2.470,4	1.936,6	1.347,3	928,2	670,7

TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	19,5	19,6	19,7	19,7	19,9	20,0	20,0	20,0	19,9	19,8	19,6	19,5
A-B	19,2	19,3	19,5	19,6	19,8	20,0	20,0	20,0	19,9	19,6	19,4	19,2
B-C	19,2	19,3	19,5	19,6	19,8	20,0	20,0	20,0	19,9	19,6	19,4	19,2
C-D	18,6	18,9	19,1	19,3	19,7	20,0	20,1	20,1	19,8	19,4	19,0	18,7
D-E	0,9	4,2	7,6	10,8	16,4	20,3	21,0	20,9	17,1	11,8	6,6	2,2
E-Add	0,1	3,5	7,1	10,4	16,2	20,3	21,0	20,9	17,0	11,5	6,0	1,5
Add-Esterno	-0,1	3,4	7,0	10,3	16,2	20,3	21,0	20,9	17,0	11,4	5,9	1,3

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. E/F												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]												

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente Gc: 0,0000 (mese di -) kg/m^2 nell'interfaccia -

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia Gc,max: 0,5000 kg/m²

Quantità di vapore residuo Ma: 0,0000 (mese di -) kg/m² nell'interfaccia -

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA Fl^{2,500} p2.500 p2.500 20_F 2,000 2,000 2,000 1.500 1.500 1.500 1,000 1,000 Febbraio Marzo Gennaio арі le т*а*доја giugna 2.500 2,000 2,000 5 1,500 H1.500 H1.000 1,000 El₅₀₀ E]500 Aprile Maggio Giugno settemble lugio agasto 2.500 2000 1.500 1,000 E|500 Luglio Agosto Settembre dæmbe attable navem Die 2.000 2,000 5 1.500 1500 1500 H1.000 H1.000 1,000 Ottobre Novembre Dicembre LEGENDA Temperatura [°C] Pressione del vapore [Pa] Press. di saturazione [Pa]

VERIFICA DI MASSA E INERZIA TERMICA

Il comportamento termico dinamico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13786.

Verifica di massa:

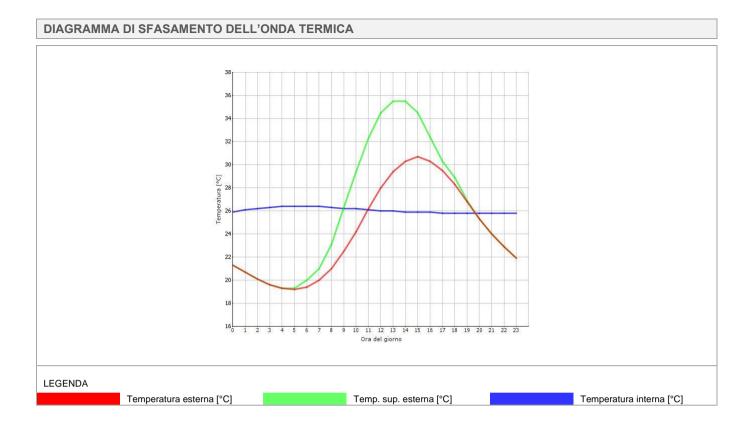
Massa della struttura per metro quadrato di superficie: 835 kg/m²

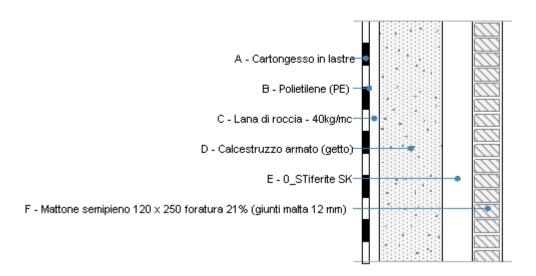
Valore minimo di massa superficiale: 230 kg/m 2

ESITO VERIFICA DI MASSA: OK

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

CONDIZIONI AL CONTORNO


Comune:	Inveruno	Colorazione:	<u>Chiaro</u>
Orientamento:	<u>s</u>	Mese massima insolazione:	luglio
Temp. media mese massima insolaz.:	24,3 °C	Temperatura massima estiva:	30,7 °C
Escursione giorno più caldo dell'anno:	11,5 °C	Irradian. mensile massima piano orizz.:	275,46 W/m ²


INERZIA TERMICA

Tempo sfasamento dell'onda termica:	15h 39'	Fattore di attenuazione:	0,0401
Capacità termica interna C1:	$58,0 \text{ kJ/(m}^2/\text{K})$	Capacità termica esterna C2:	108,9 kJ/(m ² /K)
Ammettenza interna oraria:	12,7 W/(m ² /K)	Ammettenza interna in modulo:	4,2 W/(m ² /K)
Ammettenza esterna oraria:	14,5 W/(m ² /K)	Ammettenza esterna in modulo:	7,9 W/(m ² /K)
Trasmittanza termica periodica Y:	0,008 W/(m ² K)	Classificazione struttura da normativa:	
Trasmitt. termica periodica limite Ylim:	0,100 W/(m ² K)		

ESITO VERIFICA DI INERZIA: OK

	Temperatura esterna nel giorno più caldo Te	Irradiazione solare nel giorno più caldo dell'anno le	Temp. superficiale esterna nel giorno più caldo Te,sup	Temperatura interna nel giorno più caldo Ti
Ora	°C	W/m²	°C	°C
0:00	21,26	0,00	21,26	25,93
1:00	20,68	0,00	20,68	26,06
2:00	20,11	0,00	20,11	26,18
3:00	19,65	0,00	19,65	26,30
4:00	19,30	0,00	19,30	26,39
5:00	19,19	10,00	19,31	26,43
6:00	19,42	49,00	20,01	26,43
7:00	19,99	85,75	21,02	26,39
8:00	21,03	173,00	23,10	26,30
9:00	22,52	315,75	26,31	26,22
10:00	24,25	432,75	29,44	26,16
11:00	26,20	508,25	32,30	26,08
12:00	28,04	534,25	34,45	26,02
13:00	29,42	508,25	35,52	25,97
14:00	30,34	432,75	35,54	25,92
15:00	30,69	315,75	34,48	25,88
16:00	30,34	173,00	32,42	25,86
17:00	29,54	66,50	30,34	25,83
18:00	28,27	49,50	28,87	25,81
19:00	26,78	10,00	26,90	25,79
20:00	25,28	0,00	25,28	25,78
21:00	24,02	0,00	24,02	25,78
22:00	22,87	0,00	22,87	25,80
23:00	21,95	0,00	21,95	25,85

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: Inveruno_CV03a

Note:

Tipologia:	<u>Parete</u>	Disposizione:	<u>Verticale</u>
Verso:	<u>Esterno</u>	Spessore:	<u>556,0</u> mm
Trasmittanza U:	0,153 W/(m ² K)	Resistenza R:	6,556 (m ² K)/W
Massa superf.:	845 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore	Conduttività	Resistenza	Densità	Capacità term.	Fattore	Fattore
	Suato	s	λ	R	ρ	С	μа	μu
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-	-
Α	Cartongesso in lastre	25,0	0,210	0,119	900	1,30	8,7	8,7
В	Polietilene (PE)	1,0	0,350	0,003	950	2,30	54.054 1	54.054 ,1
С	Lana di roccia - 40kg/mc	40,0	0,035	1,143	40	1,03	1,0	1,0
D	Calcestruzzo armato (getto)	250,0	1,910	0,131	2.400	1,00	0,0	999.99 9,0
Е	0_STiferite SK	120,0	0,025	4,800	35	1,40	56,0	56,0
F	Mattone semipieno 120 x 250 foratura 21% (giunti malta 12 mm)	120,0	0,632	0,190	1.800	1,00	10,0	5,0
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-		-	
	TOTALE	556,0		6,556				

Conduttanza unitaria superficiale interna: 7,690 W/(m²K)

Resistenza unitaria superficiale interna: 0,130 (m²K)/W

Conduttanza unitaria superficiale esterna: 25,000 W/(m²K)

Resistenza unitaria superficiale esterna: 0,040 (m²K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comu	ne:	Inveruno	Zona climatica:	<u>E</u>
Trasm	ittanza della struttura U:	0,153 W/(m ² K)	Trasmittanza limite Ulim:	0,260 W/(m ² K)

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

ESITO VERIFICA DI TRASMITTANZA: -

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	<u>Inveruno</u>	Tipo di calcolo:	Classi di concentrazione
Verso:	<u>Esterno</u>	Coeff. di correzione btr,x:	
Classe di adificia	Edifici con indice di affollamento non	Values interes V	3
Classe di edificio:	noto	Volume interno V:	- m ³
Produz. nota di vapore G:	- kg/h		

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	-	-0,1	84,9	0,5
febbraio	20,0	-	3,4	74,0	0,5
marzo	20,0	-	7,0	63,4	0,5
aprile	20,0	-	10,3	66,4	0,5
maggio	20,0	-	16,2	72,9	0,5
giugno	20,0	-	20,3	70,5	0,5
luglio	20,0	-	21,0	64,3	0,5
agosto	20,0	-	20,9	66,1	0,5
settembre	20,0	-	17,0	71,8	0,5
ottobre	20,0	-	11,4	90,7	0,5
novembre	20,0	-	5,9	94,7	0,5
dicembre	20,0	-	1,3	85,6	0,5

CONDIZIONE	Temperatura interna θi	Pressione parziale interna pi	Temperatura esterna θe	Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	-0,10	514,20
ESTIVA	20,00	1.615,60	21,00	1.597,60

X	La struttura non è soggetta a fenomeni di condensa interstiziale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 571,025 Pa.
	La struttura è soggetta a fenomeni di condensa.
	La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).
×	La struttura non è soggetta a fenomeni di condensa superficiale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 571,025 Pa.

VERIFICA FORMAZIONE MUFFE SUPERFICIALI

CONDIZIONI AL CONTORNO INTERNE ED ESTERNE

Mese	Temperatura esterna Te °C	Pressione esterna Pe Pa	Variazione di pressione ΔP Pa	Pressione interna Pi Pa	Temperatura interna Ti °C	Umidità relativa interna φi %
ottobre	11,4	1221,38	405,3	1626,68	20	91
novembre	5,9	878,74	600,55	1479,29	20	95
dicembre	1,3	574,43	763,85	1338,28	20	86
gennaio	-0,1	514,17	810	1324,17	20	85
febbraio	3,4	576,19	689,3	1265,49	20	74
marzo	7,0	634,73	561,5	1196,23	20	63
aprile	10,3	831,79	444,35	1276,14	20	66

CALCOLO DEL FATTORE DI RISCHIO

La verifica della formazione di muffa è eseguita in maniera conforme a quanto riportato nella norma UNI EN ISO 13788

	Temperatura superficiale critica Tsi-critica	Fattore di rischio ammissibile frsi- amm
Mese	°C	-

ottobre	17,77	0,7408
novembre	16,27	0,7356
dicembre	14,71	0,7171
gennaio	14,55	0,7287
febbraio	13,85	0,6293
marzo	12,98	0,4602
aprile	13,98	0,3789

Riepilogo dei risultati:

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione

Fattore di resistenza superficiale fRsi: 0,7408 (mese di Ottobre)

Fattore di resistenza superficiale ammissibile massimo fRsiAmm: 0,9802

ESITO VERIFICA DI MUFFA: OK

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.324,2	1.265,5	1.196,2	1.276,1	1.577,5	1.766,8	1.662,1	1.700,1	1.596,5	1.626,7	1.479,3	1.338,3
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.321,3	1.263,1	1.194,3	1.274,6	1.576,6	1.766,5	1.661,9	1.699,9	1.595,7	1.625,3	1.477,2	1.335,6
	2.228,7	2.247,3	2.266,4	2.284,2	2.316,1	2.338,6	2.342,5	2.341,9	2.320,5	2.290,1	2.260,6	2.236,1
A-B	617,8	664,4	706,6	888,6	1.372,6	1.688,9	1.605,8	1.640,8	1.416,4	1.273,2	955,6	672,1
	2.227,5	2.246,2	2.265,6	2.283,6	2.315,9	2.338,6	2.342,5	2.342,0	2.320,3	2.289,6	2.259,7	2.235,0
B-C	617,3	663,9	706,2	888,3	1.372,5	1.688,8	1.605,8	1.640,7	1.416,2	1.273,0	955,2	671,6
	1.785,4	1.872,3	1.965,6	2.054,6	2.222,5	2.346,2	2.367,9	2.364,8	2.246,2	2.085,0	1.936,7	1.819,8
C-D	617,3	663,9	706,2	888,3	1.372,5	1.688,8	1.605,8	1.640,7	1.416,2	1.273,0	955,2	671,6
	1.740,1	1.833,2	1.933,5	2.029,7	2.212,0	2.347,1	2.370,8	2.367,4	2.237,8	2.062,6	1.902,4	1.776,8
D-E	529,8	589,5	645,6	840,4	1.347,1	1.679,2	1.598,8	1.633,4	1.393,9	1.229,2	890,3	589,2
	637,9	811,8	1.033,1	1.281,0	1.856,3	2.379,2	2.480,2	2.465,6	1.949,6	1.374,5	960,5	703,1
E-F	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	611,5	784,8	1.006,8	1.257,2	1.843,3	2.380,4	2.484,7	2.469,5	1.938,9	1.352,0	933,7	676,3
F-Add	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	605,5	779,2	1.001,3	1.252,2	1.840,6	2.380,7	2.485,6	2.470,4	1.936,6	1.347,3	928,2	670,7

TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	19,6	19,7	19,7	19,8	19,9	20,0	20,0	20,0	19,9	19,8	19,7	19,6
A-B	19,2	19,4	19,5	19,6	19,9	20,0	20,0	20,0	19,9	19,7	19,5	19,3
B-C	19,2	19,4	19,5	19,6	19,9	20,0	20,0	20,0	19,9	19,7	19,5	19,3
C-D	15,7	16,5	17,2	17,9	19,2	20,1	20,2	20,2	19,4	18,2	17,0	16,0
D-E	15,3	16,1	17,0	17,7	19,1	20,1	20,2	20,2	19,3	18,0	16,7	15,6
E-F	0,6	4,0	7,5	10,6	16,3	20,3	21,0	20,9	17,1	11,7	6,4	2,0
F-Add	0,0	3,5	7,1	10,4	16,2	20,3	21,0	20,9	17,0	11,5	6,0	1,4
Add-Esterno	-0,1	3,4	7,0	10,3	16,2	20,3	21,0	20,9	17,0	11,4	5,9	1,3

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. E/F												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]												

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente Gc: 0,0000 (mese di -) kg/m^2 nell'interfaccia -

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia $G_{c,max}$: 0,5000 kg/m 2

Quantità di vapore residuo Ma: 0,0000 (mese di -) kg/m² nell'interfaccia -

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA Fl^{2,500} p2.500 p2.500 20_F 2,000 12,000 2,000 1.500 1500 1.500 1,000 1,000 Febbraio Marzo Gennaio арі le т*а*доја giugna 2.500 2,000 2.000 1,500 H1.500 H1.000 1,000 El₅₀₀ E]500 Aprile Maggio Giugno settemble lugio agasto 2.500 2000 1.500 1,000 E|500 Luglio Agosto Settembre dæmbe attable navem Die 2.000 2,000 5 1.500 1500 1500 H1.000 H1.000 1,000 Dicembre Ottobre Novembre LEGENDA Temperatura [°C] Pressione del vapore [Pa] Press. di saturazione [Pa]

VERIFICA DI MASSA E INERZIA TERMICA

Il comportamento termico dinamico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13786.

Verifica di massa:

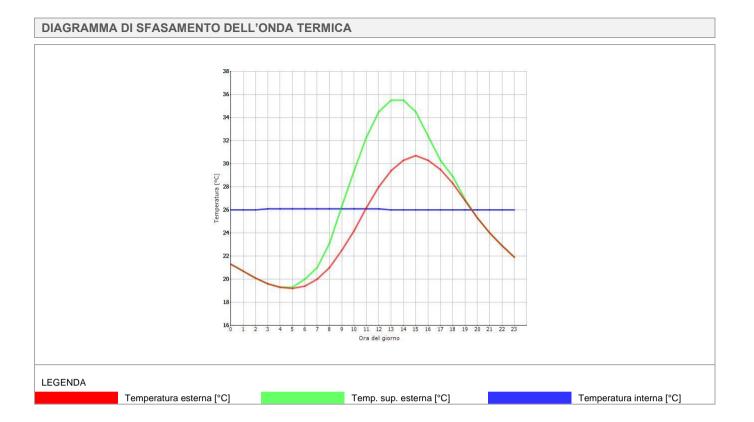
Massa della struttura per metro quadrato di superficie: 845 kg/m²

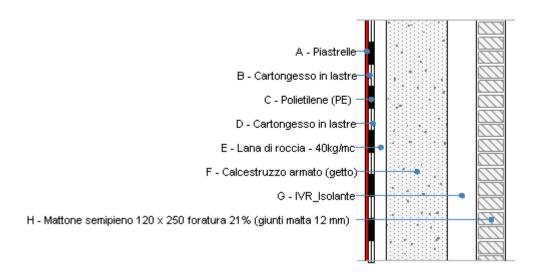
Valore minimo di massa superficiale: 230 kg/m 2

ESITO VERIFICA DI MASSA: OK

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

CONDIZIONI AL CONTORNO


Comune:	Inveruno	Colorazione:	<u>Chiaro</u>
Orientamento:	<u>s</u>	Mese massima insolazione:	luglio
Temp. media mese massima insolaz.:	24,3 °C	Temperatura massima estiva:	30,7 °C
Escursione giorno più caldo dell'anno:	11,5 °C	Irradian. mensile massima piano orizz.:	275,46 W/m ²


INERZIA TERMICA

Tempo sfasamento dell'onda termica:	17h 22'	Fattore di attenuazione:	0,0082
Capacità termica interna C1:	$27,4 \text{ kJ/(m}^2/\text{K})$	Capacità termica esterna C2:	108,9 kJ/(m ² /K)
Ammettenza interna oraria:	15,4 W/(m ² /K)	Ammettenza interna in modulo:	2,0 W/(m ² /K)
Ammettenza esterna oraria:	14,5 W/(m ² /K)	Ammettenza esterna in modulo:	7,9 W/(m ² /K)
Trasmittanza termica periodica Y:	0,001 W/(m ² K)	Classificazione struttura da normativa:	
Trasmitt. termica periodica limite Ylim:	0,100 W/(m ² K)		

ESITO VERIFICA DI INERZIA: OK

	Temperatura esterna nel giorno più caldo Te	Irradiazione solare nel giorno più caldo dell'anno le	Temp. superficiale esterna nel giorno più caldo Te,sup	Temperatura interna nel giorno più caldo Ti
Ora	°C	W/m²	°C	°C
0:00	21,26	0,00	21,26	26,01
1:00	20,68	0,00	20,68	26,02
2:00	20,11	0,00	20,11	26,05
3:00	19,65	0,00	19,65	26,08
4:00	19,30	0,00	19,30	26,10
5:00	19,19	10,00	19,31	26,12
6:00	19,42	49,00	20,01	26,13
7:00	19,99	85,75	21,02	26,13
8:00	21,03	173,00	23,10	26,12
9:00	22,52	315,75	26,31	26,10
10:00	24,25	432,75	29,44	26,08
11:00	26,20	508,25	32,30	26,07
12:00	28,04	534,25	34,45	26,05
13:00	29,42	508,25	35,52	26,04
14:00	30,34	432,75	35,54	26,03
15:00	30,69	315,75	34,48	26,02
16:00	30,34	173,00	32,42	26,01
17:00	29,54	66,50	30,34	26,01
18:00	28,27	49,50	28,87	26,00
19:00	26,78	10,00	26,90	26,00
20:00	25,28	0,00	25,28	25,99
21:00	24,02	0,00	24,02	25,99
22:00	22,87	0,00	22,87	25,99
23:00	21,95	0,00	21,95	26,00

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: Inveruno_CV03b

Note:

Tipologia:	<u>Parete</u>	Disposizione:	<u>Verticale</u>
Verso:	<u>Esterno</u>	Spessore:	<u>576,0</u> mm
Trasmittanza U:	0,158 W/(m ² K)	Resistenza R:	6,337 (m ² K)/W
Massa superf.:	869 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

		Change	Conduttività	Desistants	Densità	Composità to ma	Fattara	Fottore
	Strato	Spessore		Resistenza		Capacità term.	Fattore	Fattore
		s	λ	R	ρ	С	μа	μи
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	<u>-</u>	-	-
Α	Piastrelle	10,0	1,000	0,010	2.300	0,84	213,2	999.99 9,0
В	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7	8,7
0	Delications (DE)	4.0	0.050	0.000	050	0.00	54.054	54.054
С	Polietilene (PE)	1,0	0,350	0,003	950	2,30	,1	,1
D	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7	8,7
Е	Lana di roccia - 40kg/mc	50,0	0,035	1,429	40	1,03	1,0	1,0
F	Calcestruzzo armato (getto)	250,0	1,910	0,131	2.400	1,00	0,0	999.99 9,0
G	IVR_Isolante	120,0	0,028	4,286	35	1,40	56,0	56,0
Н	Mattone semipieno 120 x 250 foratura 21% (giunti malta 12 mm)	120,0	0,632	0,190	1.800	1,00	10,0	5,0
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-	_	-	-
	TOTALE	576,0		6,337				

Conduttanza unitaria superficiale interna: 7,690 W/(m²K)

Resistenza unitaria superficiale interna: 0,130 (m²K)/W

Conduttanza unitaria superficiale esterna: 25,000 W/(m²K)

Resistenza unitaria superficiale esterna: 0,040 (m²K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	<u>Inveruno</u>	Zona climatica:	<u>E</u>
Trasmittanza della struttura U:	0,158 W/(m ² K)	Trasmittanza limite Ulim:	0,260 W/(m ² K)

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	Inveruno	Tipo di calcolo:	Classi di concentrazione	
Verso:	<u>Esterno</u>	Coeff. di correzione btr,x:		
Classe di edificio:	Edifici con indice di affollamento non	Volume interno V:	3	
Classe di edilicio.	noto	volume interno v.	- m ³	
Produz. nota di vapore G:	- kg/h			

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	-	-0,1	84,9	0,5
febbraio	20,0	-	3,4	74,0	0,5
marzo	20,0	-	7,0	63,4	0,5
aprile	20,0	-	10,3	66,4	0,5
maggio	20,0	-	16,2	72,9	0,5
giugno	20,0	-	20,3	70,5	0,5
luglio	20,0	-	21,0	64,3	0,5
agosto	20,0	-	20,9	66,1	0,5
settembre	20,0	-	17,0	71,8	0,5
ottobre	20,0	-	11,4	90,7	0,5
novembre	20,0	-	5,9	94,7	0,5
dicembre	20,0	-	1,3	85,6	0,5

CONDIZIONE	Temperatura interna θi	Pressione parziale interna pi	Temperatura esterna θe	Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	-0,10	514,20
ESTIVA	20,00	1.615,60	21,00	1.597,60

X	La struttura non è soggetta a fenomeni di condensa interstiziale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 571,055 Pa.
	La struttura è soggetta a fenomeni di condensa.
	La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).
×	La struttura non è soggetta a fenomeni di condensa superficiale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 571,055 Pa.

VERIFICA FORMAZIONE MUFFE SUPERFICIALI

CONDIZIONI AL CONTORNO INTERNE ED ESTERNE

Mese	Temperatura esterna Te °C	Pressione esterna Pe Pa	Variazione di pressione ΔP Pa	Pressione interna Pi Pa	Temperatura interna Ti °C	Umidità relativa interna φi %
ottobre	11,4	1221,38	405,3	1626,68	20	91
novembre	5,9	878,74	600,55	1479,29	20	95
dicembre	1,3	574,43	763,85	1338,28	20	86
gennaio	-0,1	514,17	810	1324,17	20	85
febbraio	3,4	576,19	689,3	1265,49	20	74
marzo	7,0	634,73	561,5	1196,23	20	63
aprile	10,3	831,79	444,35	1276,14	20	66

CALCOLO DEL FATTORE DI RISCHIO

La verifica della formazione di muffa è eseguita in maniera conforme a quanto riportato nella norma UNI EN ISO 13788

	Temperatura superficiale critica Tsi-critica	Fattore di rischio ammissibile frsi- amm
Mese	°C	-

ottobre	17,77	0,7408
novembre	16,27	0,7356
dicembre	14,71	0,7171
gennaio	14,55	0,7287
febbraio	13,85	0,6293
marzo	12,98	0,4602
aprile	13,98	0,3789

Riepilogo dei risultati:

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione

Fattore di resistenza superficiale fRsi: 0,7408 (mese di Ottobre)

Fattore di resistenza superficiale ammissibile massimo fRsiAmm: 0,9795

ESITO VERIFICA DI MUFFA: OK

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.324,2	1.265,5	1.196,2	1.276,1	1.577,5	1.766,8	1.662,1	1.700,1	1.596,5	1.626,7	1.479,3	1.338,3
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.297,3	1.242,7	1.177,6	1.261,4	1.569,7	1.763,8	1.660,0	1.697,9	1.589,6	1.613,3	1.459,4	1.313,0
	2.273,5	2.284,4	2.295,7	2.306,1	2.324,8	2.337,9	2.340,1	2.339,8	2.327,4	2.309,6	2.292,3	2.277,8
A-B	1.296,0	1.241,5	1.176,7	1.260,7	1.569,3	1.763,7	1.659,9	1.697,7	1.589,3	1.612,6	1.458,4	1.311,7
	2.246,9	2.262,4	2.278,4	2.293,1	2.319,7	2.338,3	2.341,5	2.341,1	2.323,3	2.298,1	2.273,5	2.253,1
B-C	615,8	662,7	705,2	887,6	1.372,0	1.688,7	1.605,7	1.640,6	1.415,9	1.272,2	954,1	670,3
	2.245,7	2.261,3	2.277,6	2.292,5	2.319,5	2.338,3	2.341,6	2.341,1	2.323,1	2.297,5	2.272,6	2.251,9
C-D	614,5	661,5	704,2	886,8	1.371,7	1.688,5	1.605,6	1.640,5	1.415,5	1.271,6	953,1	669,0
	2.219,4	2.239,5	2.260,3	2.279,6	2.314,3	2.338,7	2.342,9	2.342,3	2.319,1	2.286,0	2.254,0	2.227,4
D-E	613,8	661,0	703,8	886,5	1.371,5	1.688,4	1.605,5	1.640,4	1.415,4	1.271,2	952,6	668,4
	1.665,1	1.768,2	1.880,0	1.987,8	2.194,3	2.348,6	2.375,8	2.371,9	2.223,7	2.025,0	1.845,2	1.705,7
E-F	613,8	661,0	703,8	886,5	1.371,5	1.688,4	1.605,5	1.640,4	1.415,4	1.271,2	952,6	668,4
	1.621,0	1.729,7	1.848,1	1.962,8	2.183,6	2.349,5	2.378,9	2.374,6	2.215,1	2.002,4	1.811,2	1.663,7
F-G	529,3	589,0	645,2	840,1	1.346,9	1.679,1	1.598,8	1.633,3	1.393,8	1.228,9	889,9	588,7
	639,0	813,0	1.034,2	1.282,0	1.856,9	2.379,1	2.480,0	2.465,4	1.950,1	1.375,4	961,6	704,2
G-H	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	611,7	784,9	1.007,0	1.257,3	1.843,4	2.380,4	2.484,6	2.469,5	1.939,0	1.352,2	933,9	676,5
H-Add	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	605,5	779,2	1.001,3	1.252,2	1.840,6	2.380,7	2.485,6	2.470,4	1.936,6	1.347,3	928,2	670,7

TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	19,6	19,7	19,7	19,8	19,9	20,0	20,0	20,0	19,9	19,8	19,7	19,6
A-B	19,6	19,6	19,7	19,8	19,9	20,0	20,0	20,0	19,9	19,8	19,7	19,6
B-C	19,4	19,5	19,6	19,7	19,9	20,0	20,0	20,0	19,9	19,7	19,6	19,4
C-D	19,4	19,5	19,6	19,7	19,9	20,0	20,0	20,0	19,9	19,7	19,5	19,4
D-E	19,2	19,3	19,5	19,6	19,8	20,0	20,0	20,0	19,9	19,6	19,4	19,2
E-F	14,6	15,6	16,5	17,4	19,0	20,1	20,3	20,2	19,2	17,7	16,2	15,0
F-G	14,2	15,2	16,3	17,2	18,9	20,1	20,3	20,3	19,1	17,5	15,9	14,6
G-H	0,6	4,0	7,5	10,7	16,3	20,3	21,0	20,9	17,1	11,7	6,4	2,0
H-Add	0,0	3,5	7,1	10,4	16,2	20,3	21,0	20,9	17,0	11,5	6,0	1,4
Add-Esterno	-0,1	3,4	7,0	10,3	16,2	20,3	21,0	20,9	17,0	11,4	5,9	1,3

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. E/F												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]												

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente Gc: 0,0000 (mese di -) kg/m^2 nell'interfaccia -

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia $Gc,max: 0,5000 \text{ kg/m}^2$ Quantità di vapore residuo Ma: $0,0000 \text{ (mese di -) kg/m}^2 \text{ nell'interfaccia -}$

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA Fl^{2,500} p2.500 p2.500 20_F 2,000 12,000 2,000 1.500 1500 1.500 1,000 1,000 Febbraio Gennaio Marzo арі le т*а*доја giugna 2.500 2,000 1,500 H1.500 H1.000 1,000 El₅₀₀ E]500 Aprile Maggio Giugno settemble lugio agasto 2.500 2000 1.500 1,000 E|500 Luglio Agosto Settembre attable navem Die doemble 2,000 2.000 2,000 1.500 1500 1500 H1.000 H1.000 1,000 Dicembre Ottobre Novembre LEGENDA Temperatura [°C] Pressione del vapore [Pa] Press. di saturazione [Pa]

VERIFICA DI MASSA E INERZIA TERMICA

Il comportamento termico dinamico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13786.

Verifica di massa:

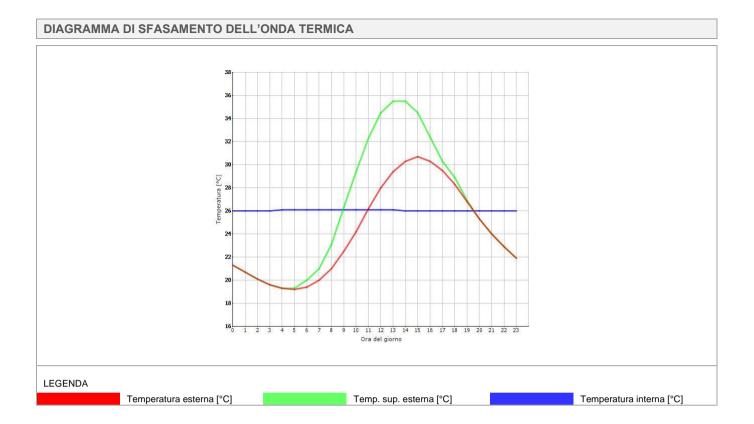
Massa della struttura per metro quadrato di superficie: 869 kg/m²

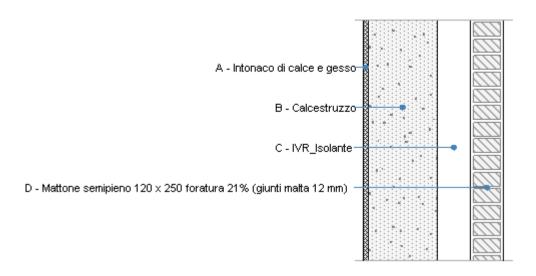
Valore minimo di massa superficiale: 230 kg/m 2

ESITO VERIFICA DI MASSA: OK

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

CONDIZIONI AL CONTORNO


Comune:	Inveruno	Colorazione:	<u>Chiaro</u>
Orientamento:	<u>s</u>	Mese massima insolazione:	luglio
Temp. media mese massima insolaz.:	24,3 °C	Temperatura massima estiva:	30,7 °C
Escursione giorno più caldo dell'anno:	11,5 °C	Irradian. mensile massima piano orizz.:	275,46 W/m ²


INERZIA TERMICA

Tempo sfasamento dell'onda termica:	18h 07'	Fattore di attenuazione:	0,0067
Capacità termica interna C1:	41,2 kJ/(m ² /K)	Capacità termica esterna C2:	108,9 kJ/(m ² /K)
Ammettenza interna oraria:	15,6 W/(m ² /K)	Ammettenza interna in modulo:	3,0 W/(m ² /K)
Ammettenza esterna oraria:	14,5 W/(m ² /K)	Ammettenza esterna in modulo:	7,9 W/(m ² /K)
Trasmittanza termica periodica Y:	0,001 W/(m ² K)	Classificazione struttura da normativa:	
Trasmitt. termica periodica limite Ylim:	0,100 W/(m ² K)		

ESITO VERIFICA DI INERZIA: OK

	Temperatura esterna nel giorno più caldo Te	Irradiazione solare nel giorno più caldo dell'anno le	Temp. superficiale esterna nel giorno più caldo Te,sup	Temperatura interna nel giorno più caldo Ti
Ora	°C	W/m²	°C	°C
0:00	21,26	0,00	21,26	26,01
1:00	20,68	0,00	20,68	26,01
2:00	20,11	0,00	20,11	26,03
3:00	19,65	0,00	19,65	26,05
4:00	19,30	0,00	19,30	26,07
5:00	19,19	10,00	19,31	26,09
6:00	19,42	49,00	20,01	26,10
7:00	19,99	85,75	21,02	26,11
8:00	21,03	173,00	23,10	26,11
9:00	22,52	315,75	26,31	26,10
10:00	24,25	432,75	29,44	26,09
11:00	26,20	508,25	32,30	26,08
12:00	28,04	534,25	34,45	26,07
13:00	29,42	508,25	35,52	26,05
14:00	30,34	432,75	35,54	26,04
15:00	30,69	315,75	34,48	26,03
16:00	30,34	173,00	32,42	26,03
17:00	29,54	66,50	30,34	26,02
18:00	28,27	49,50	28,87	26,02
19:00	26,78	10,00	26,90	26,01
20:00	25,28	0,00	25,28	26,01
21:00	24,02	0,00	24,02	26,00
22:00	22,87	0,00	22,87	26,00
23:00	21,95	0,00	21,95	26,00

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: Inveruno_CV03c

Note:

Tipologia:	<u>Parete</u>	Disposizione:	<u>Verticale</u>
Verso:	<u>Esterno</u>	Spessore:	<u>505,0</u> mm
Trasmittanza U:	0,184 W/(m ² K)	Resistenza R:	5,425 (m ² K)/W
Massa superf.:	520 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore	Conduttività	Resistenza	Densità	Capacità term.	Fattore	Fattore
		s [mm]	λ [W/(mK)]	<i>R</i> [(m ² K)/W]	ρ [Kg/m ³]	C [kJ/(kgK)]	μa [-]	μ <i>u</i> [-]
	Adduttanza interna (flusso orizzontale)	-	-	0,130	- [rtg/m]	[10/(t/grt/)] -	-	-
Α	Intonaco di calce e gesso	15,0	0,700	0,021	1.400	0,84	11,1	11,1
В	Calcestruzzo	250,0	0,330	0,758	1.200	1,00	3,3	3,3
С	IVR_Isolante	120,0	0,028	4,286	35	1,40	56,0	56,0
D	Mattone semipieno 120 x 250 foratura 21% (giunti malta 12 mm)	120,0	0,632	0,190	1.800	1,00	10,0	5,0
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-	-	-	-
	TOTALE	505,0		5,425				

Conduttanza unitaria superficiale interna: 7,690 W/(m²K)

Resistenza unitaria superficiale interna: 0,130 (m²K)/W

Conduttanza unitaria superficiale esterna: 25,000 W/(m²K)

Resistenza unitaria superficiale esterna: 0,040 (m²K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	<u>Inveruno</u>	Zona climatica:	<u>E</u>
Trasmittanza della struttura U:	0,184 W/(m ² K)	Trasmittanza limite Ulim:	0,260 W/(m ² K)

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

ESITO VERIFICA DI TRASMITTANZA: -

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	Inveruno	Tipo di calcolo:	Classi di concentrazione	
Verso:	<u>Esterno</u>	Coeff. di correzione btr,x:		
Classe di edificio:	Edifici con indice di affollamento non	Volume interno V:	- m3	
Classe di edilicio.	noto	volume interno v.	- IIIo	
Produz. nota di vapore G:	- kg/h			

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	-	-0,1	84,9	0,5
febbraio	20,0	-	3,4	74,0	0,5
marzo	20,0	-	7,0	63,4	0,5
aprile	20,0	-	10,3	66,4	0,5
maggio	20,0	-	16,2	72,9	0,5
giugno	20,0	-	20,3	70,5	0,5
luglio	20,0	-	21,0	64,3	0,5
agosto	20,0	-	20,9	66,1	0,5
settembre	20,0	-	17,0	71,8	0,5
ottobre	20,0	-	11,4	90,7	0,5
novembre	20,0	-	5,9	94,7	0,5
dicembre	20,0	-	1,3	85,6	0,5

CONDIZIONE	Temperatura interna θi	Pressione parziale interna pi	Temperatura esterna θe	Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	-0,10	514,20
ESTIVA	20,00	1.615,60	21,00	1.597,60

X	La struttura non è soggetta a fenomeni di condensa interstiziale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 571,205 Pa.
	La struttura è soggetta a fenomeni di condensa.
	La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).
×	La struttura non è soggetta a fenomeni di condensa superficiale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 571,205 Pa.

VERIFICA FORMAZIONE MUFFE SUPERFICIALI

CONDIZIONI AL CONTORNO INTERNE ED ESTERNE

	Temperatura esterna Te	Pressione esterna Pe	Variazione di pressione ΔP	Pressione interna Pi	Temperatura interna Ti	Umidità relativa interna φi
Mese	°C	Pa	Pa	Pa	°C	%
ottobre	11,4	1221,38	405,3	1626,68	20	91
novembre	5,9	878,74	600,55	1479,29	20	95
dicembre	1,3	574,43	763,85	1338,28	20	86
gennaio	-0,1	514,17	810	1324,17	20	85
febbraio	3,4	576,19	689,3	1265,49	20	74
marzo	7,0	634,73	561,5	1196,23	20	63
aprile	10,3	831,79	444,35	1276,14	20	66

CALCOLO DEL FATTORE DI RISCHIO

La verifica della formazione di muffa è eseguita in maniera conforme a quanto riportato nella norma UNI EN ISO 13788

	Temperatura superficiale critica Tsi-critica	Fattore di rischio ammissibile frsi- amm
Mese	°C	-

ottobre	17,77	0,7408
novembre	16,27	0,7356
dicembre	14,71	0,7171
gennaio	14,55	0,7287
febbraio	13,85	0,6293
marzo	12,98	0,4602
aprile	13,98	0,3789

Riepilogo dei risultati:

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione

Fattore di resistenza superficiale fRsi: 0,7408 (mese di Ottobre)

Fattore di resistenza superficiale ammissibile massimo fRsiAmm: 0,9760

ESITO VERIFICA DI MUFFA: OK

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.324,2	1.265,5	1.196,2	1.276,1	1.577,5	1.766,8	1.662,1	1.700,1	1.596,5	1.626,7	1.479,3	1.338,3
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.309,0	1.252,6	1.185,7	1.267,8	1.573,1	1.765,1	1.660,9	1.698,8	1.592,6	1.619,1	1.468,1	1.324,0
	2.257,0	2.270,7	2.285,0	2.298,1	2.321,6	2.338,2	2.341,0	2.340,6	2.324,9	2.302,4	2.280,6	2.262,5
A-B	1.233,4	1.188,3	1.133,3	1.226,4	1.551,2	1.756,8	1.654,9	1.692,5	1.573,3	1.581,3	1.412,0	1.252,7
	1.891,9	1.963,6	2.039,8	2.111,9	2.246,4	2.344,2	2.361,3	2.358,9	2.265,2	2.136,4	2.016,2	1.920,3
В-С	623,2	668,9	710,3	891,6	1.374,2	1.689,5	1.606,3	1.641,2	1.417,7	1.275,9	959,5	677,2
	644,7	818,8	1.039,9	1.287,0	1.859,6	2.378,8	2.479,1	2.464,6	1.952,3	1.380,2	967,3	710,0
C-D	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	612,6	785,9	1.007,9	1.258,2	1.843,9	2.380,4	2.484,5	2.469,3	1.939,4	1.353,0	934,9	677,4
D-Add	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	605,5	779,2	1.001,3	1.252,2	1.840,6	2.380,7	2.485,6	2.470,4	1.936,6	1.347,3	928,2	670,7

TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	19,5	19,6	19,7	19,8	19,9	20,0	20,0	20,0	19,9	19,8	19,7	19,6
A-B	19,4	19,5	19,6	19,7	19,9	20,0	20,0	20,0	19,9	19,8	19,6	19,5
B-C	16,6	17,2	17,8	18,4	19,4	20,1	20,2	20,2	19,5	18,6	17,6	16,9
C-D	0,8	4,1	7,6	10,7	16,4	20,3	21,0	20,9	17,1	11,8	6,5	2,1
D-Add	0,0	3,5	7,1	10,4	16,2	20,3	21,0	20,9	17,0	11,5	6,0	1,4
Add-Esterno	-0,1	3,4	7,0	10,3	16,2	20,3	21,0	20,9	17,0	11,4	5,9	1,3

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0.0000	0.0000	0.0000	0,0000	0.0000	0.0000	0,0000	0,0000	0.000

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente Gc: 0,0000 (mese di -) kg/m^2 nell'interfaccia -

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia Gc,max: 0,5000 kg/m²

Quantità di vapore residuo Ma: 0,0000 (mese di -) kg/m² nell'interfaccia -

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA Fl^{2,500} p2.500 p2.500 20_F 2,000 2,000 2,000 5 1.500 1.500 1.500 1,000 1,000 Febbraio Gennaio Marzo арі le т*а*доја giugna 2.500 2,000 5 1,500 H1.500 H1.000 1,000 El₅₀₀ E]500 Aprile Maggio Giugno settemble lugia agasto 2.500 2000 H1.500 1,000 E|₅₀₀ Luglio Agosto Settembre dæmbe attable navem Die FI^{2,500} 2,000 2,000 5 1.500 1500 1500 H1.000 H1.000 1,000 Ottobre Novembre Dicembre LEGENDA Temperatura [°C] Pressione del vapore [Pa] Press. di saturazione [Pa]

VERIFICA DI MASSA E INERZIA TERMICA

Il comportamento termico dinamico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13786.

Verifica di massa:

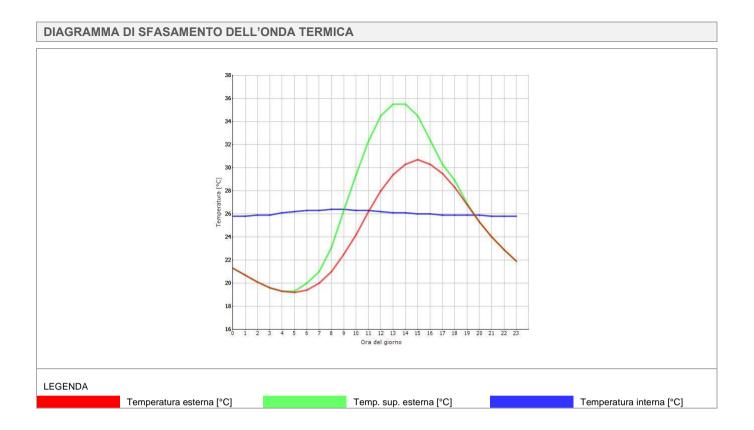
Massa della struttura per metro quadrato di superficie: 520 kg/m²

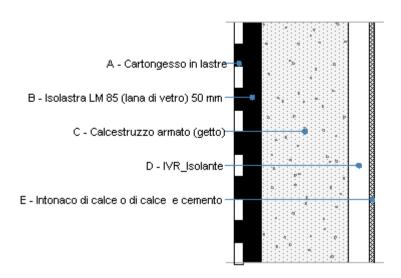
Valore minimo di massa superficiale: 230 kg/m 2

ESITO VERIFICA DI MASSA: OK

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

CONDIZIONI AL CONTORNO


Comune:	<u>Inveruno</u>	Colorazione:	<u>Chiaro</u>
Orientamento:	<u>s</u>	Mese massima insolazione:	luglio
Temp. media mese massima insolaz.:	24,3 °C	Temperatura massima estiva:	30,7 °C
Escursione giorno più caldo dell'anno:	11,5 °C	Irradian. mensile massima piano orizz.:	275,46 W/m ²


INERZIA TERMICA

Tempo sfasamento dell'onda termica:	19h 11'	Fattore di attenuazione:	0,0359
Capacità termica interna C1:	49,9 kJ/(m ² /K)	Capacità termica esterna C2:	108,9 kJ/(m ² /K)
Ammettenza interna oraria:	13,9 W/(m ² /K)	Ammettenza interna in modulo:	3,6 W/(m ² /K)
Ammettenza esterna oraria:	14,5 W/(m ² /K)	Ammettenza esterna in modulo:	7,9 W/(m ² /K)
Trasmittanza termica periodica Y:	0,007 W/(m ² K)	Classificazione struttura da normativa:	
Trasmitt. termica periodica limite Ylim:	0,100 W/(m ² K)		

ESITO VERIFICA DI INERZIA: OK

	Temperatura esterna nel giorno più caldo Te	Irradiazione solare nel giorno più caldo dell'anno le	Temp. superficiale esterna nel giorno più caldo Te,sup	Temperatura interna nel giorno più caldo Ti
Ora	°C	W/m²	°C	°C
0:00	21,26	0,00	21,26	25,81
1:00	20,68	0,00	20,68	25,83
2:00	20,11	0,00	20,11	25,87
3:00	19,65	0,00	19,65	25,94
4:00	19,30	0,00	19,30	26,06
5:00	19,19	10,00	19,31	26,17
6:00	19,42	49,00	20,01	26,27
7:00	19,99	85,75	21,02	26,35
8:00	21,03	173,00	23,10	26,39
9:00	22,52	315,75	26,31	26,39
10:00	24,25	432,75	29,44	26,35
11:00	26,20	508,25	32,30	26,28
12:00	28,04	534,25	34,45	26,20
13:00	29,42	508,25	35,52	26,15
14:00	30,34	432,75	35,54	26,08
15:00	30,69	315,75	34,48	26,02
16:00	30,34	173,00	32,42	25,97
17:00	29,54	66,50	30,34	25,93
18:00	28,27	49,50	28,87	25,90
19:00	26,78	10,00	26,90	25,88
20:00	25,28	0,00	25,28	25,86
21:00	24,02	0,00	24,02	25,83
22:00	22,87	0,00	22,87	25,82
23:00	21,95	0,00	21,95	25,81

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: Inveruno_CV04b

Note:

Tipologia:	<u>Parete</u>	Disposizione:	<u>Verticale</u>
Verso:	<u>Esterno</u>	Spessore:	<u>400,0</u> mm
Trasmittanza U:	0,241 W/(m ² K)	Resistenza R:	4,142 (m ² K)/W
Massa superf.:	629 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore	Conduttività	Resistenza	Densità	Capacità term.	Fattore	Fattore
	Suato	s	λ	R	ρ	С	μа	μu
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-	
Α	Cartongesso in lastre	25,0	0,210	0,119	900	1,30	8,7	8,7
В	Isolastra LM 85 (lana di vetro) 50 mm	50,0	0,032	1,563	85	1,00	1,1	1,1
С	Calcestruzzo armato (getto)	250,0	1,910	0,131	2.400	1,00	0,0	999.99 9,0
D	IVR_Isolante	60,0	0,028	2,143	35	1,40	56,0	56,0
Е	Intonaco di calce o di calce e cemento	15,0	0,900	0,017	1.800	0,84	16,7	16,7
	Adduttanza esterna (flusso orizzontale)	-	-	0,040		-		
	TOTALE	400.0		4,142				

Conduttanza unitaria superficiale interna: 7,690 W/(m²K)

Resistenza unitaria superficiale interna: 0,130 (m²K)/W

Conduttanza unitaria superficiale esterna: 25,000 W/(m²K)

Resistenza unitaria superficiale esterna: 0,040 (m²K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	<u>Inveruno</u>	Zona climatica:	<u>E</u>
Trasmittanza della struttura U:	0,241 W/(m ² K)	Trasmittanza limite Ulim:	0,260 W/(m ² K)

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

ESITO VERIFICA DI TRASMITTANZA: -

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	Inveruno	Tipo di calcolo:	Classi di concentrazione
Verso:	<u>Esterno</u>	Coeff. di correzione btr,x:	
Classe di edificio:	Edifici con indice di affollamento non	Volume interno V:	- m3
Classe di edificio:	noto	volume interno v:	- Wo
Produz. nota di vapore G:	- kg/h		

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	-	-0,1	84,9	0,5
febbraio	20,0	-	3,4	74,0	0,5
marzo	20,0	-	7,0	63,4	0,5
aprile	20,0	-	10,3	66,4	0,5
maggio	20,0	-	16,2	72,9	0,5
giugno	20,0	-	20,3	70,5	0,5
luglio	20,0	-	21,0	64,3	0,5
agosto	20,0	-	20,9	66,1	0,5
settembre	20,0	-	17,0	71,8	0,5
ottobre	20,0	-	11,4	90,7	0,5
novembre	20,0	-	5,9	94,7	0,5
dicembre	20,0	-	1,3	85,6	0,5

CONDIZIONE	Temperatura interna θi	emperatura interna θi Pressione parziale interna pi		Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	-0,10	514,20
ESTIVA	20,00	1.615,60	21,00	1.597,60

X	La struttura non è soggetta a fenomeni di condensa interstiziale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 571,527 Pa.
	La struttura è soggetta a fenomeni di condensa.
	La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).
×	La struttura non è soggetta a fenomeni di condensa superficiale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 571,527 Pa.

VERIFICA FORMAZIONE MUFFE SUPERFICIALI

CONDIZIONI AL CONTORNO INTERNE ED ESTERNE

Mese	Temperatura esterna Te °C	Pressione esterna Pe Pa	Variazione di pressione ΔP Pa	Pressione interna Pi Pa	Temperatura interna Ti °C	Umidità relativa interna φi %
ottobre	11,4	1221,38	405,3	1626.68	20	91
novembre	5,9	878,74	600,55	1479,29	20	95
			,	· · ·		
dicembre	1,3	574,43	763,85	1338,28	20	86
gennaio	-0,1	514,17	810	1324,17	20	85
febbraio	3,4	576,19	689,3	1265,49	20	74
marzo	7,0	634,73	561,5	1196,23	20	63
aprile	10,3	831,79	444,35	1276,14	20	66

CALCOLO DEL FATTORE DI RISCHIO

La verifica della formazione di muffa è eseguita in maniera conforme a quanto riportato nella norma UNI EN ISO 13788

	Temperatura superficiale critica Tsi-critica	Fattore di rischio ammissibile frsi- amm
Mese	°C	-

ottobre	17,77	0,7408
novembre	16,27	0,7356
dicembre	14,71	0,7171
gennaio	14,55	0,7287
febbraio	13,85	0,6293
marzo	12,98	0,4602
aprile	13,98	0,3789

Riepilogo dei risultati:

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione

Fattore di resistenza superficiale fRsi: 0,7408 (mese di Ottobre)

Fattore di resistenza superficiale ammissibile massimo fRsiAmm: 0,9686

ESITO VERIFICA DI MUFFA: OK

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.324,2	1.265,5	1.196,2	1.276,1	1.577,5	1.766,8	1.662,1	1.700,1	1.596,5	1.626,7	1.479,3	1.338,3
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.278,8	1.226,9	1.164,8	1.251,2	1.564,3	1.761,8	1.658,5	1.696,3	1.584,9	1.604,0	1.445,6	1.295,5
	2.167,7	2.196,4	2.226,2	2.253,9	2.304,1	2.339,6	2.345,7	2.344,8	2.311,0	2.263,2	2.217,1	2.179,1
A-B	1.267,3	1.217,1	1.156,8	1.245,0	1.561,0	1.760,5	1.657,6	1.695,3	1.582,0	1.598,2	1.437,1	1.284,7
	1.330,3	1.471,7	1.630,6	1.789,3	2.107,1	2.356,0	2.401,0	2.394,5	2.153,8	1.845,2	1.580,5	1.385,4
B-C	1.267,3	1.217,1	1.156,8	1.245,0	1.561,0	1.760,5	1.657,6	1.695,3	1.582,0	1.598,2	1.437,1	1.284,7
	1.275,3	1.421,8	1.587,7	1.754,5	2.091,3	2.357,4	2.405,7	2.398,7	2.141,0	1.813,4	1.535,3	1.332,2
C-D	566,3	620,6	670,9	860,4	1.357,7	1.683,2	1.601,8	1.636,4	1.403,3	1.247,5	917,4	623,6
	618,3	791,8	1.013,6	1.263,4	1.846,7	2.380,1	2.483,5	2.468,5	1.941,7	1.357,8	940,7	683,2
D-E	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	614,7	788,0	1.010,0	1.260,1	1.844,9	2.380,3	2.484,1	2.469,0	1.940,2	1.354,7	937,0	679,5
E-Add	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	605,5	779,2	1.001,3	1.252,2	1.840,6	2.380,7	2.485,6	2.470,4	1.936,6	1.347,3	928,2	670,7

TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	19,4	19,5	19,6	19,7	19,9	20,0	20,0	20,0	19,9	19,7	19,6	19,4
A-B	18,8	19,0	19,2	19,4	19,8	20,0	20,1	20,1	19,8	19,5	19,2	18,9
B-C	11,2	12,7	14,3	15,8	18,3	20,1	20,4	20,4	18,7	16,2	13,8	11,8
C-D	10,6	12,2	13,9	15,5	18,2	20,1	20,5	20,4	18,6	16,0	13,4	11,2
D-E	0,2	3,6	7,2	10,4	16,3	20,3	21,0	20,9	17,0	11,5	6,1	1,6
E-Add	0,1	3,6	7,1	10,4	16,2	20,3	21,0	20,9	17,0	11,5	6,0	1,5
Add-Esterno	-0,1	3,4	7,0	10,3	16,2	20,3	21,0	20,9	17,0	11,4	5,9	1,3

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. E/F												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]												

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente Gc: 0,0000 (mese di -) kg/m 2 nell'interfaccia -

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia Gc,max: 0,5000 kg/m²

Quantità di vapore residuo Ma: 0,0000 (mese di -) kg/m² nell'interfaccia -

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA Fl^{2,500} p2.500 p2.500 2,000 2,000 2000 1,500 1500 1,500 1,000 1,000 Febbraio Marzo Gennaio арі le т*а*доја giugna 2.500 2,000 1,500 H1.500 H1.000 1,000 El₅₀₀ E]500 Aprile Maggio Giugno agas to lugia settemble 2.500 2000 1500 1,000 Luglio Agosto Settembre attable navem Die doemble 2,000 2,000 1,500 1500 1,500 H1.000 1,000 H1.000 Dicembre Ottobre Novembre LEGENDA Temperatura [°C] Pressione del vapore [Pa] Press. di saturazione [Pa]

VERIFICA DI MASSA E INERZIA TERMICA

Il comportamento termico dinamico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13786.

Verifica di massa:

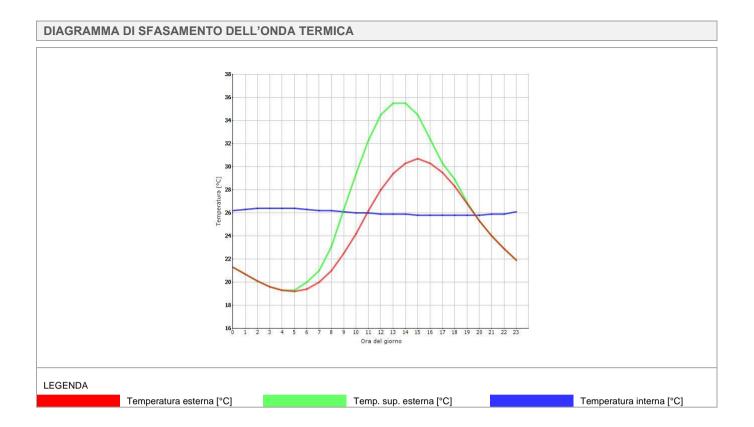
Massa della struttura per metro quadrato di superficie: 629 kg/m²

Valore minimo di massa superficiale: 230 kg/m 2

ESITO VERIFICA DI MASSA: OK

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

CONDIZIONI AL CONTORNO


Comune:	Inveruno	Colorazione:	<u>Chiaro</u>
Orientamento:	<u>s</u>	Mese massima insolazione:	luglio
Temp. media mese massima insolaz.:	24,3 °C	Temperatura massima estiva:	30,7 °C
Escursione giorno più caldo dell'anno:	11,5 °C	Irradian. mensile massima piano orizz.:	275,46 W/m ²

INERZIA TERMICA

Tempo sfasamento dell'onda termica:	11h 38'	Fattore di attenuazione:	0,0183
Capacità termica interna C1:	$26.8 \text{ kJ/(m}^2/\text{K})$	Capacità termica esterna C2:	$24,0 \text{ kJ/(m}^2/\text{K})$
Ammettenza interna oraria:	15,7 W/(m ² /K)	Ammettenza interna in modulo:	1,9 W/(m ² /K)
Ammettenza esterna oraria:	16,7 W/(m ² /K)	Ammettenza esterna in modulo:	1,7 W/(m ² /K)
Trasmittanza termica periodica Y:	0,004 W/(m ² K)	Classificazione struttura da normativa:	
Trasmitt. termica periodica limite Ylim:	0,100 W/(m ² K)		

ESITO VERIFICA DI INERZIA: OK

	Temperatura esterna nel giorno più caldo Te	Irradiazione solare nel giorno più caldo dell'anno le	Temp. superficiale esterna nel giorno più caldo Te,sup	Temperatura interna nel giorno più caldo Ti
Ora	°C	W/m²	°C	°C
0:00	21,26	0,00	21,26	26,20
1:00	20,68	0,00	20,68	26,22
2:00	20,11	0,00	20,11	26,22
3:00	19,65	0,00	19,65	26,20
4:00	19,30	0,00	19,30	26,16
5:00	19,19	10,00	19,31	26,13
6:00	19,42	49,00	20,01	26,10
7:00	19,99	85,75	21,02	26,06
8:00	21,03	173,00	23,10	26,03
9:00	22,52	315,75	26,31	26,01
10:00	24,25	432,75	29,44	25,99
11:00	26,20	508,25	32,30	25,97
12:00	28,04	534,25	34,45	25,96
13:00	29,42	508,25	35,52	25,95
14:00	30,34	432,75	35,54	25,94
15:00	30,69	315,75	34,48	25,93
16:00	30,34	173,00	32,42	25,92
17:00	29,54	66,50	30,34	25,92
18:00	28,27	49,50	28,87	25,94
19:00	26,78	10,00	26,90	25,96
20:00	25,28	0,00	25,28	25,99
21:00	24,02	0,00	24,02	26,05
22:00	22,87	0,00	22,87	26,11
23:00	21,95	0,00	21,95	26,16

LOCALE	Sup. Locale		Sup. richiesta 1/8	Sup. Utile Aerante	R.A. (S.U.F./S.L.)	Sup. Utile Illuminante	R.I. (S.U.F./S.L.)
DIAM							
PIANO TERRA Aule	54,21	mq	54,21/8 = 6,78 mg	(1,70 m x 2,60 m) x 2 = 8,84 mg	8,84 > 6,78	1,70 m x (2,60 m - 0,60 m) x 2 = 6,80 mg	6,80 > 6,78
(001, 005)				(1,70 m x 2,60 m) x 2 = 8,84 mq	Verificato 8,84 > 6,26	, , , , , , , , , , , , , , , , , , , ,	0,80 > 6,76 Verificato 6,80 > 6,26
Aule (002, 003, 004, 006, 007, 008)	50,11	mq	50,11/8 = 6,26 mq	(1,70 m x 2,60 m) x 2 = 8,84 mq	Verificato	1,70 m x (2,60 m - 0,60 m) x 2 = 6,80 mq	Verificato
Servizi igienici (019, 020)	28,07	mq	28,07/8 = 3,51 mq	(1,70 m x 0,85 m)x2 = 2,89 mq	2,89 < 3,51 Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	(1,70 m x 1,50 m) = 2,55 mq	2,55 < 3,51 Integrazione con illuminazio dinamica e dimerabile come norma UNI 12464 (verelazione tecnica)
Distribuzione (018)	443,69	mq	443,69/8 = 55,46 mq	(1,70 m x 2,60 m) x 24 = 106,08 mq	106,08 > 55,46 Verificato	1,70 m x (2,60 m - 0,60 m) x 20 = 57,80 mq	57,80 > 55,46 Verificato
Segreteria (013)	26,64	mq	26,64/8 = 3,33 mq	-	Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	1,70 m x (2,60 m - 0,60 m) = 3,40 mq	Integrazione con illuminazio dinamica e dimerabile come norma UNI 12464 (ve relazione tecnica)
Segreteria (014)	16,36	mq	16,36/8 = 2,04 mq	(1,70 m x 2,60 m) = 4,42 mq	4,42 > 2,04 Verificato	1,70 m x (2,60 m - 0,60 m) = 3,40 mq	3,40 > 2,04 Verificato
Segreteria (015)	11,15	mq	11,15/8 = 1,34 mq	(1,70 m x 2,60 m) = 4,42 mq	4,42 > 1,34 Verificato	1,70 m x (2,60 m - 0,60 m) = 3,40 mq	3,40 > 1,34 Verificato
Servizi igienici (017)	18,39	mq	18,39/8 = 2,30 mq	(1,70 m x 1,50 m) = 2,55 mq	2,55 > 2,30 Verificato	(1,70 m x 1,50 m) = 2,55 mq	2,55 > 2,30 Verificato
Atrio (023)	87,61	mq	87,61/8 = 10,95 mq	(1,70 m x 2,60 m) x 3 = 13,26 mq	13,26 > 10,95 Verificato	1,70 m x (2,60 m - 0,60 m) x 3 = 10,20 mq	10,20 < 10,95 Integrazione con illuminazio dinamica e dimerabile come norma UNI 12464 (ve
Segreteria (016)	23,83	mq	23,83/8 = 2,99 mq	(1,70 m x 2,60 m) = 4,42 mq	4,42 > 2,99 Verificato	1,70 m x (2,60 m - 0,60 m)= 3,40 mq	relazione tecnica) 3,40 > 2,96 Verificato
Servizi igienici (022)	3,63	mq	3,63/8 = 0,45 mq	-	Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	-	Integrazione con illuminazio dinamica e dimerabile come norma UNI 12464 (ve relazione tecnica)
Infermeria (029)	21,91	mq	21,97/8 = 2,75 mq	(1,70 m x 2,60 m) = 4,42 mq	4,42 > 2,75 Verificato	1,70 m x (2,60 m - 0,60 m)= 3,40 mq	3,40 > 2,75 Verificato
Servizi igienici (021)	3,63	mq	3,63/8 = 0,45 mq	-	Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	-	Integrazione con illuminazio dinamica e dimerabile come norma UNI 12464 (vo relazione tecnica)
Ripostiglio (028)	2,54	mq	-	-	-	-	Integrazione con illuminazio dinamica e dimerabile come norma UNI 12464 (ve relazione tecnica)
Palestra (026)	306,44	mq	-	-	Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	-	34,00 < 44,20 Integrazione con illuminazionamica e dimerabile come norma UNI 12464 (virelazione tecnica)
Atrio (011)	69,43	mq	69,43/8 = 8,68 mq	(1,70 m x 2,60 m) x 5 = 22,10 mq	22,10 > 8,68 Verificato	1,70 m (2,60 m - 0,60 m) x 5 = 17,00 mq	17,00 > 8,68 Verificato
Connettivo	42,04	mq	41,54/8 = 5,19 mq	(1,30 m x 2,35 m) x 5 = 15,28 mq	15,28 > 5,19	1,30 m (2,35 m - 0,60 m) x 5 = 14,88 mq	14,88 > 5,19
(023) Spogliatoio (024)	22,48	mq	22,48/8 = 2,81 mq	-	Verificato Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	-	Integrazione con illuminazio dinamica e dimerabile come norma UNI 12464 (vo relazione tecnica)
Spogliatoio (025)	22,57	mq	22,57/8 = 2,82 mq	-	Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	-	Integrazione con illuminazio dinamica e dimerabile come norma UNI 12464 (ve relazione tecnica)
Refettorio (010)	210,13	mq	210,13/8 = 26,27 mq	(1,70 m x 2,60 m) x 14 = 61,88 mq	61,88 > 26,27 Verificato	1,70 m x (2,60 m - 0,60 m) x 14 = 47,60 mq	47,60 > 26,27 Verificato
Zona servizio (009)	37,88	mq	37,88/8 = 4,74 mq	(1,70 m x 1,50 m) = 2,55 mq	2,55 < 4,74 Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	(1,70 m x 1,50 m) = 2,55 mq	2,55 < 4,74 Integrazione con illuminazionamica e dimerabile come norma UNI 12464 (virelazione tecnica)
Lavaggio (059)	7,67	mq	7,67/8 = 0,96 mq	-	Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	-	Integrazione con illuminazio dinamica e dimerabile come norma UNI 12464 (v relazione tecnica)
Servizi igienici (003)	2,52	mq	2,52/8 = 0,32 mq	-	Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	-	Integrazione con illuminazione dinamica e dimerabile come norma UNI 12464 (virelazione tecnica)
Antibagno (060)	3,38	mq	3,38/8 = 0,42 mq	-	Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	-	Integrazione con illuminazio dinamica e dimerabile come norma UNI 12464 (v relazione tecnica)
PIANO PRIMO							
Laboratorio (044)	81,53	mq	81,53/8 = 10,19 mq	(1,70 m x 1,50 m) x 4 = 10,20 mq	10,20 > 10,19 Verificato	1,70 m x (2,60 m - 0,60 m) x 4 = 13,60 mq	13,60 > 10,19 Verificato
Aule (036, 037, 038, 040, 041, 042)	50,11	mq	50,11/8 = 6,26 mq	(1,70 m x 1,50 m) x 2 + (1,70 m x 1,00 m) x 2 / 2 =6,80 mq	6,80 > 6,26 Verificato	1,70 m x (2,60 m - 0,60 m) x 2 = 6,80 mq	6,80 > 6,26 Verificato
Aule (039)	51,21	mq	54,21/8 = 6,78 mq	(1,70 m x 1,50 m) x 2 + (1,70 m x 1,00 m) x 2/2 =6,80 mq	6,80 > 6,48 Verificato	1,70 m x (2,60 m - 0,60 m) x 2 = 6,80 mq	6,80 > 6,78 verificato
Servizi igienici (033, 044)	28,07	mq	28,07/8 = 3,51 mq	(1,70 m x 0,85 m) x 2 = 2,89 mq	2,89 < 3,51 Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	(1,70 m x 0,85 m) x 2 = 2,89 mq	2,89 < 3,51 Integrazione con illuminazi dinamica e dimerabile come norma UNI 12464 (v
Distribuzione (043)	373,62	mq	373,62/8 = 46,70 mq	(1,70 m x 2,60 m) x 22 = 97,24 mq	97,24 > 46,70 Verificato	1,70 m x (2,60 m - 0,60 m) x 22 = 74,80 mq	relazione tecnica) 74,80 > 46,70 Verificato
Aula professori (031)	54,40	mq	54,40/8 = 6,80 mq	(1,70 m x 1,50 m) x 2 + (1,70 m x 1,00 m) x 2/2=6,80 mg	6,80 = 6,80 Verificato	1,70 m x (2,60 m - 0,60 m) x 2 = 6,80 mq	6,80 = 6,80 Verificato
Servizi igienici	18,39	mq	18,39/8 = 2,30 mq	(1,70 m x 1,50 m) = 2,55 mq	2,55 > 2,30	(1,70 m x 1,50 m) = 2,55 mq	2,55 > 2,30
(051) Laboratorio	81,40	mq	81,40/8 = 10,18 mq	(1,70 m x 1,50 m) x 3 + (1,70 m x 1,00 m) x	Verificato 10,20 > 10,18	1,70 m x (2,60 m - 0,60 m) x 3 = 10,20 mq	Verificato 10,20 > 10,18
(045, 046) Laboratorio (043)	91,54	mq	91,54/8 = 11,44 mq	3 / 2 = 10,20mq (1,30 m x 1,35 m) x 5 + (1,30 m x 1,00) x 5 / 2 = 12,03 mq	Verificato 12,03 > 11,44 Verificato	1,30 m x (2,35 m - 0,60 m) x 5 = 11,37 mq	Verificato 11,37 < 11,44 Integrazione con illuminazione dinamica e dimerabile come
							norma UNI 12464 (v relazione tecnica) Integrazione con illuminazi

LOCALE	Sup. Locale		Sup. richiesta 1/8	Sup. Utile Aerante	R.A. (S.U.F./S.L.)	Sup. Utile Illuminante	R.I. (S.U.F./S.L.)
PIANO TERRA							
Aule 001, 005)	54,21	mq	54,21/8 = 6,78 mq	(1,70 m x 2,60 m) x 2 = 8,84 mq	8,84 > 6,78 Verificato	1,70 m x (2,60 m - 0,60 m) x 2 = 6,80 mq	6,80 > 6,78 Verificato
Aule 002, 003, 004, 006, 007, 008)	50,11	mq	50,11/8 = 6,26 mq	(1,70 m x 2,60 m) x 2 = 8,84 mq	8,84 > 6,26 Verificato	1,70 m x (2,60 m - 0,60 m) x 2 = 6,80 mq	6,80 > 6,26 Verificato
Servizi igienici (019, 020)	28,07	mq	28,07/8 = 3,51 mq	(1,70 m x 0,85 m)x2 = 2,89 mq	2,89 < 3,51 Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	(1,70 m x 1,50 m) = 2,55 mq	2,55 < 3,51 Integrazione con illuminazione dinamica e dimerabile come da norma UNI 12464 (vedi relazione tecnica)
Distribuzione (018)	443,69	mq	443,69/8 = 55,46 mq	(1,70 m x 2,60 m) x 24 = 106,08 mq	106,08 > 55,46 Verificato	1,70 m x (2,60 m - 0,60 m) x 20 = 57,80 mq	57,80 > 55,46 Verificato
Segreteria (013)	26,64	mq	26,64/8 = 3,33 mq	-	Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	1,70 m x (2,60 m - 0,60 m) = 3,40 mq	Integrazione con illuminazione dinamica e dimerabile come da norma UNI 12464 (vedi relazione tecnica)
Segreteria (014)	16,36	mq	16,36/8 = 2,04 mq	(1,70 m x 2,60 m) = 4,42 mq	4,42 > 2,04 Verificato	1,70 m x (2,60 m - 0,60 m) = 3,40 mq	3,40 > 2,04 Verificato
Segreteria (015)	11,15	mq	11,15/8 = 1,34 mq	(1,70 m x 2,60 m) = 4,42 mq	4,42 > 1,34 Verificato	1,70 m x (2,60 m - 0,60 m) = 3,40 mq	3,40 > 1,34 Verificato
Servizi igienici (017)	18,39	mq	18,39/8 = 2,30 mq	(1,70 m x 1,50 m) = 2,55 mq	2,55 > 2,30 Verificato	(1,70 m x 1,50 m) = 2,55 mq	2,55 > 2,30 Verificato
Atrio (023)	87,61	mq	87,61/8 = 10,95 mq	(1,70 m x 2,60 m) x 3 = 13,26 mq	13,26 > 10,95 Verificato	1,70 m x (2,60 m - 0,60 m) x 3 = 10,20 mq	10,20 < 10,95 Integrazione con illuminazione dinamica e dimerabile come da norma UNI 12464 (vedi relazione tecnica)
Segreteria (016)	23,83	mq	23,83/8 = 2,99 mq	(1,70 m x 2,60 m) = 4,42 mq	4,42 > 2,99 Verificato	1,70 m x (2,60 m - 0,60 m)= 3,40 mq	3,40 > 2,96 Verificato
Servizi igienici (022)	3,63	mq	3,63/8 = 0,45 mq	-	Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	-	Integrazione con illuminazione dinamica e dimerabile come da norma UNI 12464 (vedi relazione tecnica)
Infermeria (029)	21,91	mq	21,97/8 = 2,75 mq	(1,70 m x 2,60 m) = 4,42 mq	4,42 > 2,75 Verificato	1,70 m x (2,60 m - 0,60 m)= 3,40 mq	3,40 > 2,75 Verificato
Servizi iglenici (021)	3,63	mq	3,63/8 = 0,45 mq	-	Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	-	Integrazione con illuminazione dinamica e dimerabile come da norma UNI 12464 (vedi relazione tecnica)
Ripostiglio (028)	2,54	mq	-	-	-	-	Integrazione con illuminazione dinamica e dimerabile come da norma UNI 12464 (vedi relazione tecnica)
Palestra (026)	306,44	mq	-	-	Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	-	34,00 < 44,20 Integrazione con illuminazione dinamica e dimerabile come da norma UNI 12464 (vedirelazione tecnica)
Atrio (011)	69,43	mq	69,43/8 = 8,68 mq	(1,70 m x 2,60 m) x 5 = 22,10 mq	22,10 > 8,68 Verificato	1,70 m (2,60 m - 0,60 m) x 5 = 17,00 mq	17,00 > 8,68 Verificato
Connettivo	42,04	mq	41,54/8 = 5,19 mq	(1,30 m x 2,35 m) x 5 = 15,28 mq	15,28 > 5,19 Verificato	1,30 m (2,35 m - 0,60 m) x 5 = 14,88 mq	14,88 > 5,19 Verificato
(023) Spogliatoio	22,48	mq	22,48/8 = 2,81 mq	-	Integrazione con ventilazione	-	Integrazione con illuminazione
(024)	00.57		22,57/8 = 2,82 mq		meccanica secondo norma UNI 10339 (vedi relazione tecnica) Integrazione con ventilazione		dinamica e dimerabile come da norma UNI 12464 (vedi relazione tecnica)
Spogliatoio (025)	22,57	mq	22,57/0 = 2,02 mq	-	meccanica secondo norma UNI 10339 (vedi relazione tecnica)	-	Integrazione con illuminazione dinamica e dimerabile come da norma UNI 12464 (vedi relazione tecnica)
Refettorio (010)	210,13	mq	210,13/8 = 26,27 mq	(1,70 m x 2,60 m) x 14 = 61,88 mq	61,88 > 26,27 Verificato	1,70 m x (2,60 m - 0,60 m) x 14 = 47,60 mq	47,60 > 26,27 Verificato
Zona servizio (009)	37,88	mq	37,88/8 = 4,74 mq	(1,70 m x 1,50 m) = 2,55 mq	2,55 < 4,74 Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	(1,70 m x 1,50 m) = 2,55 mq	2,55 < 4,74 Integrazione con illuminazione dinamica e dimerabile come da norma UNI 12464 (vedirelazione tecnica)
Lavaggio (059)	7,67	mq	7,67/8 = 0,96 mq	-	Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	-	Integrazione con illuminazione dinamica e dimerabile come da norma UNI 12464 (vedi relazione tecnica)
Servizi igienici (003)	2,52	mq	2,52/8 = 0,32 mq	-	Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	-	Integrazione con illuminazione dinamica e dimerabile come da norma UNI 12464 (vedi relazione tecnica)
Antibagno (060)	3,38	mq	3,38/8 = 0,42 mq	-	Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	-	Integrazione con illuminazione dinamica e dimerabile come da norma UNI 12464 (vedi relazione tecnica)
PIANO PRIMO _aboratorio	81,53	ma	81,53/8 = 10,19 mq	(1,70 m x 1,50 m) x 4 = 10,20 mg	10,20 > 10,19	1,70 m x (2,60 m - 0,60 m) x 4 = 13,60 mq	13,60 > 10,19
Aule 036, 037, 038, 040,	50,11		50,11/8 = 6,26 mq	(1,70 m x 1,50 m) x 2 + (1,70 m x 1,00 m) x 2 / 2 = 6,80 mq	Verificato 6,80 > 6,26 Verificato	1,70 m x (2,60 m - 0,60 m) x 2 = 6,80 mq	Verificato 6,80 > 6,26 Verificato
041, 042) Aule	51,21	mq	54,21/8 = 6,78 mq	(1,70 m x 1,50 m) x 2 + (1,70 m x 1,00 m) x	6,80 > 6,48	1,70 m x (2,60 m - 0,60 m) x 2 = 6,80 mq	6,80 > 6,78
039) Servizi igienici 033, 044)	28,07	mq	28,07/8 = 3,51 mq	2 / 2 =6,80 mq (1,70 m x 0,85 m) x 2 = 2,89 mq	Verificato 2,89 < 3,51 Integrazione con ventilazione meccanica secondo norma UNI 10330 (vadi relazione tecnica)	(1,70 m x 0,85 m) x 2 = 2,89 mq	2,89 < 3,51 Integrazione con illuminazione dinamica e dimerabile come da
Distribuzione (043)	373,62	mq	373,62/8 = 46,70 mq	(1,70 m x 2,60 m) x 22 = 97,24 mq	10339 (vedi relazione tecnica) 97,24 > 46,70 Verificato	1,70 m x (2,60 m - 0,60 m) x 22 = 74,80 mq	norma UNI 12464 (ved relazione tecnica) 74,80 > 46,70 Verificato
Aula professori (031)	54,40	mq	54,40/8 = 6,80 mq	(1,70 m x 1,50 m) x 2 + (1,70 m x 1,00 m) x 2/2 = 6,80 mq	6,80 = 6,80 Verificato	1,70 m x (2,60 m - 0,60 m) x 2 = 6,80 mq	6,80 = 6,80 Verificato
Servizi igienici	18,39	mq	18,39/8 = 2,30 mq	(1,70 m x 1,50 m) = 2,55 mq	2,55 > 2,30	(1,70 m x 1,50 m) = 2,55 mq	2,55 > 2,30
.aboratorio 045, 046)	81,40	mq	81,40/8 = 10,18 mq	(1,70 m x 1,50 m) x 3 + (1,70 m x 1,00 m) x 3/2 = 10,20mq	Verificato 10,20 > 10,18 Verificato	1,70 m x (2,60 m - 0,60 m) x 3 = 10,20 mq	Verificato 10,20 > 10,18 Verificato
(045, 046) Laboratorio (043)	91,54	mq	91,54/8 = 11,44 mq	(1,30 m x 1,35 m) x 5 + (1,30 m x 1,00) x 5 / 2 = 12,03 mq	12,03 > 11,44 Verificato	1,30 m x (2,35 m - 0,60 m) x 5 = 11,37 mq	11,37 < 11,44 Integrazione con illuminazione dinamica e dimerabile come da
							norma UNI 12464 (ved relazione tecnica)
Ripostiglio (028)	2,54	mq	-	-	-	-	Integrazione con illuminazione dinamica e dimerabile come da

Oggetto:
Azienda tutela della Salute (ATS)
Edificio B - Pianta piano primo

Tavola n°:

ATS

06

Comune di Inveruno - (MI)

RELAZIONE TECNICA

Attestante la rispondenza alle prescrizioni in materia di contenimento del consumo energetico degli edifici

EDIFICIO:	Realizzazione del nuovo plesso scolastico di Inveruno - Via IV Novembre - Auditorium
INDIRIZZO	Via IV Novembre, Inveruno (MI)
COMMITTENTE:	Comune di Inveruno
PROGETTISTA:	Ing. Paolo Oliaro
	Firma:

Egregio Signor Sindaco del comune di **Inveruno**, (**MI**) e per conoscenza all'Ufficio Tecnico del comune di **Inveruno**, (**MI**)

RELAZIONE TECNICA DI CUI AL COMMA 1 DELL'ARTICOLO 8 DEL DECRETO LEGISLATIVO 19 AGOSTO 2005, N. 192, ATTESTANTE LA RISPONDENZA ALLE PRESCRIZIONI IN MATERIA DI CONTENIMENTO DEL CONSUMO ENERGETICO DEGLI EDIFICI

Nuove costruzioni, ristrutturazioni importanti di primo livello, edifici ad energia quasi zero

Un edificio esistente è sottoposto a ristrutturazione importante di primo livello quando l'intervento ricade nelle tipologie indicate al paragrafo 1.4.1, comma 3, lettera a) dell'Allegato 1 del decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005.

1 INFORMAZIONI	GENERALI			
Comune di	Inveruno		Provincia	MI
Progetto per la reali	izzazione di			
Realizzazione del	nuovo plesso scolastic	o di Inveruno - Via	IV Novembre - Auditorium	
X Edificio pubblico)			
X Edificio ad uso p	oubblico			
Sito in	Via IV Novembre			
Mappale				
Sezione				
Foglio				
Particella				
Subalterni				
Richiesta Permesso		<u>N</u>	Del	
Permesso di Costru		N	_ Del	
Variante Permesso	di Costruire	N	Del	
decreto di cui all'art		reto legislativo 192/2	la categoria di cui al punto 1.2 2005; per edifici costituiti da pa	
E.7 attività sco	lastiche a tutti i livelli e	assimilabili		
Numero delle unità	immobiliari	1		
Soggetti coinvolti				
Committente			Comune di Inveruno	
Progettista degli impi			Arch. Claudia Soldati	
· ·	nento termico dell'edificio		Arch. Claudia Soldati	
· ·	na di ricambio dell'aria de		Arch. Claudia Soldati	
•	er l'isolamento termico de			
•	er la realizzazione degli in	·		
	el sistema di ricambio dell			
Progettista dei sistem	ni di illuminazione dell'edi	ficio	Arch. Claudia Soldati	

Direttore dei lavori dei sistemi di illuminazione dell'edificio	
Tecnico incaricato per la redazione dell'APE	

2 FATTORI TIPOLOGICI DELL'EDIFICIO

Seleziona gli elementi tipologici da fornire, al solo scopo di supportare la presente rela	zione tecnica:
X Piante di ciascun piano degli edifici con orientamento e indicazione d'uso prevaler definizione degli elementi costruttivi	nte dei singoli locali e
Prospetti e sezioni degli edifici con evidenziazione dei sistemi di protezione solare elementi costruttivi	e definizione degli
Elaborati grafici relativi ad eventuali sistemi solari passivi specificatamente proget sfruttamento degli apporti solari	tati per favorire lo
3 PARAMETRI CLIMATICI DELLA LOCALITÀ	
Gradi giorno (della zona d'insediamento, determinati in base al DPR 412/93) GG	2609
Temperatura minima di progetto (dell'aria esterna norma UNI 5364 e succ agg.) K	268,1

4 DATI TECNICI E COSTRUTTIVI DELL'EDIFICIO (O DEL COMPLESSO DI EDIFICI) E DELLE RELATIVE STRUTTURE

Climatizzazione invernale

Unità immobiliare	S [m ²]	V [m ³]	S/V	Su [m ²]
Scuola Inveruno	1.021,00	2.812,40	0,36	483,81

303,8

V Volume delle parti di edificio climatizzate al lordo delle strutture che li delimitano

Temperatura massima estiva di progetto dell'aria esterna secondo norma

S/V rapporto tra superficie disperdente e volume lordi o fattore di forma dell'edificio

 ${\it Su}$ superficie utile climatizzata dell'edificio

Unità immobiliare	Zona climatizzata	Tinv [°C]	φinv [%]
Scuola Inveruno	C. Auditorium	20,0	50

Tinv Valore di progetto della temperatura interna invernale φinv valore di progetto dell'umidità relativa interna per la climatizzazione invernale

Unità immobiliare	Presenza contabilizzazione	Metodo
Scuola Inveruno		_

Climatizzazione estiva

Unità immobiliare	S [m ²]	V [m ³]	Su [m ²]
Scuola Inveruno	1.021,00	2.812,40	483,81

S Superficie disperdente che delimita il volume climatizzato

V Volume delle parti di edificio climatizzate al lordo delle strutture che li delimitano

Su Superficie utile climatizzata dell'edificio

Unità immobiliare	Zona climatizzata	Test [°C]	φest [%]
Scuola Inveruno	C. Auditorium	26,0	50

Test Valore di progetto della temperatura interna estiva

Φest Valore di progetto dell'umidità relativa interna estiva

S Superficie disperdente che delimita il volume climatizzato

Unità immobiliare	Presenza contabilizzazione	Metodo
Scuola Inveruno		-

Informazioni	generali e	prescrizioni
--------------	------------	--------------

Presenza di reti di teleriscaldamento/raffreddamento a meno di 1000 m [] Si [x] No
Se "sì" descrivere le opere edili ed impiantistiche previste necessarie al collegamento alle reti. Se non sono state predisposte opere inserire la motivazione:
Livello di automazione per il controllo, la regolazione e la gestione delle tecnologie dell'edificio e degli impianti termici (BACS), classe (min = classe B norma UNI EN 15232): B
Adozione di materiali ad elevata riflettenza solare per le coperture: [] Si [x] No
Valore di riflettenza solare 0 > 0,65 per coperture piane
Valore di riflettenza solare 0 > 0.30 per coperture a falda
Se "no" riportare le ragioni tecnico-economiche che hanno portato al non utilizzo dei materiali riflettenti
Adozione di tecnologie di climatizzazione passiva per le coperture [] Si [x] No
Se "no" riportare le ragioni tecnico-economiche che hanno portato al non utilizzo:
Non necessarie
Adozione di misuratori d'energia (Energy Meter) [] Si [x] No
Se "sì" descrizione e caratteristiche principali
Adozione di sistemi di contabilizzazione diretta del calore [] Si [x] No
Adozione di sistemi di contabilizzazione diretta del freddo [] Si [x] No
Adozione di sistemi di contabilizzazione diretta dell'ACS [] Si [x] No
Se "no" riportare le ragioni tecnico-economiche che hanno portato al non utilizzo e definire quale sistema di contabilizzazione è stato utilizzato:
Utilizzazione di fonti di energia rinnovabili per la copertura dei consumi di calore, di elettricità e per il raffrescamento secondo i principi minimi di integrazione, le modalità e le decorrenze di cui all'allegato 3, del decreto legislativo 3 marzo 2011, n. 28.
Produzione di energia termica Indicare la % di copertura tramite il ricorso ad energia prodotta da impianti alimentati da fonti rinnovabili, dei consumi previsti per:
Acqua Calda Sanitaria 73,1%
Climatizzazione invernale, Acqua Calda Sanitaria, Climatizzazione estiva 69,4%
Produzione di energia elettrica Indicare la potenza elettrica degli impianti alimentati da fonti rinnovabili: Superficie in pianta dell'edificio a livello del terreno S 297,00 m²
Potenza Elettrica P=(1/K)*S 6,53 kW
Descrizione e potenza degli impianti alimentati da fonti rinnovabili:

Adozione sistemi di regolazione automatica della temperatura ambiente singoli locali o nelle zone termiche servite

da impianti di climatizzazione invernale

[] Si [x] No

Adozione sistemi di compensazione climatica nella regolazione automatica della temperatura ambiente singoli locali o nelle zone termiche servite da impianti di climatizzazione invernale:

[] Si [x] No

Se "no" documentare le ragioni tecniche che hanno portato alla non utilizzazione

Valutazione sull'efficacia dei sistemi schermanti delle superfici vetrate sia esterni che interni presenti: (vedi allegati alla relazione tecnica)

Verifiche di cui alla lettera b) del punto 3.3.4 del decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005

Tutte le pareti opache verticali ad eccezione di quelle comprese nel quadrante nord-ovest/nord/nord-est: Valore di Massa superficiale

Elemento edilizio	M Sup [Kg/m ²]	Limite [Kg/m ²]	Verifica
Verifica non richiesta			

Valore del modulo della trasmittanza termica periodica YIE

Elemento edilizio	YIE [W/m ² K]	Limite [W/m²κ]	Verifica
Verifica non richiesta			

Verifiche di cui alla lettera c) del punto 3.3.4 del decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005

5 DATI RELATIVI AGLI IMPIANTI

5.1 Impianti termici

Impianto tecnologico destinato ai servizi di climatizzazione invernale e/o estiva e/o produzione di acqua calda sanitaria, indipendentemente dal vettore energetico utilizzato.

a) Descrizione impianto

Tipologia

Impianto idronico servito da generatori a pompa di calore acqua-acqua collegati ad un pozzo di presa ed uno di resa.

Sistemi di generazione

Due pompe di calore acqua-acqua collegate ad un' UTA con batterie caldo e freddo e pompa di calore aria-acqua per la produzione di acqua calda sanitaria.

Sistemi di termoregolazione

Presente

Sistemi di contabilizzazione dell'energia termica

Sono previsti contacalorie con contatore volumetrico della portata e sonde di temperatura sulle linee di mandata e ritorno del circuito primario

Sistemi di distribuzione del vettore termico

Rete di tubazione in acciaio nero o multistrato con isolamento conforme al DPR 412/93

Sistemi di ventilazione forzata

E' previsto un sistema di ventilazione meccanica con recupero di calore che garantisce in tutti i locali le portate richieste dalla norma UNI10339.

Sistemi di accumulo termico

Sistemi di r							00 litri.	
· · · · · · · · · · · · · · · · ·	oroduzione dell'	acqua calda sa	nitaria					
Sistema a	pompa di calo	re aria-acqua						
Sistemi di d	distribuzione del	ll'acqua calda s	sanitaria					
Tubazione	in multistrato.	•						
Trattament	o di condizionar	mento chimico	per l'acqua (r	norma UNI 806	65)			
Presente								
Durezza de	ell'acqua di alim	entazione dei g	jeneratori di d	calore				
Filtro di sic	urezza							
Presente								
b) Specifi	che dei genera	ntori di energia	1					
Installazion	ne di un contato	re del volume d	li acqua calda	a sanitaria	[] Si [x]	No		
Installazion	ne di un contatoi	re del volume d	li acqua di rei	ntegro dell'imp	oianto [] Si [x] N	0	
Lato estern	npa di calore (ai no (specificare a		· -	-		are o lago - A	Acqua	
Potenza te Il dato è in fui	rmica utile risc nzione delle tempe Tpozzo caldo 35,00 227,170	:aldamento [k\	N]	qua		- -	-	-
Potenza te Il dato è in fur Ts,fredda [°C] 15,0	rmica utile risc nzione delle tempe Tpozzo caldo 35,00 227,170	ealdamento [k\ erature di pozzo di 45,00 209,050	55,00 186,980	qua e fredda - -		- -	-	-
Potenza te Il dato è in fur Ts,fredda [°C] 15,0 Potenza ele Coefficient Il dato è in fur	rmica utile risconzione delle temperazione delle de	ealdamento [k\ erature di pozzo di 45,00 209,050 ne (COP)	55,00 186,980	e fredda 00,00 W		- -	-	-
Potenza te // dato è in fun Ts,fredda [°C] 15,0 Potenza ele Coefficient // dato è in fun Ts,fredda	rmica utile risc nzione delle tempe Tpozzo caldo 35,00 227,170 ettrica assorbita te di prestazior nzione delle tempe Tpozzo caldo	45,00 209,050 ne (COP) erature di pozzo di	N] saldo e sorgente 55,00 186,980 1.5 saldo e sorgente	e fredda 00,00 W			-	-
Potenza te // dato è in fun Ts,fredda [°C] 15,0 Potenza ele Coefficient // dato è in fun Ts,fredda [°C]	rmica utile risconzione delle temperazione delle te	45,00 100 100 100 100 100 100 100	55,00 186,980 1.5 saldo e sorgente	e fredda 00,00 W			-	-
Potenza te II dato è in fun Ts,fredda [°C] 15,0 Potenza ele Coefficient II dato è in fun Ts,fredda	rmica utile risc nzione delle tempe Tpozzo caldo 35,00 227,170 ettrica assorbita te di prestazior nzione delle tempe Tpozzo caldo	45,00 209,050 ne (COP) erature di pozzo di	N] saldo e sorgente 55,00 186,980 1.5 saldo e sorgente	e fredda 00,00 W			-	-
Potenza te dato è in fun Ts,fredda [°C] 15,0 Potenza ele Coefficient dato è in fun Ts,fredda [°C] 15,0 POMPA DI	rmica utile risconzione delle temperazione delle te	45,00 209,050 ne (COP) erature di pozzo di 45,00 5,400	55,00 186,980 1.5 ealdo e sorgente 55,00 4,208	e fredda 00,00 W			-	-
Potenza te dato è in fun Ts,fredda [°C] 15,0 Potenza ele Coefficient dato è in fun Ts,fredda [°C] 15,0 POMPA DI ARISTON T	rmica utile risconzione delle temperazione delle te	45,00 209,050 A 5,00 45,00 45,00 45,00 45,00 45,00 45,00 5,400	55,00 186,980 1.5 aldo e sorgente 55,00 4,208	e fredda 00,00 W				-
Potenza te dato è in fun Ts,fredda [°C] 15,0 Potenza ele Coefficient dato è in fun Ts,fredda [°C] 15,0 POMPA DI ARISTON T	rmica utile risconzione delle tempe Tpozzo caldo 35,00 227,170 ettrica assorbita te di prestazior nzione delle tempe Tpozzo caldo 35,00 6,962 CALORE THERMO GROUDALE CALORE CALOR	45,00 209,050 As a large of the control of the con	55,00 186,980 1.5 saldo e sorgente 55,00 4,208	e fredda 00,00 W e fredda	a gas			-
Potenza te Il dato è in fun Ts,fredda [°C] 15,0 Potenza ele Coefficient Il dato è in fun Ts,fredda [°C] 15,0 POMPA DI ARISTON T Pompa di co	rmica utile risconzione delle temperazione delle te	45,00 209,050 A 5,00 209,050 A 5,00 45,00 45,00 45,00 5,400	55,00 186,980 1.5 saldo e sorgente 55,00 4,208 /O 80 elettrica o/interno)	e fredda 00,00 W e fredda Aria interna	a gas	dal clima - Ad		-

Potenza termica utile riscaldamento [kW]

Il dato è in funzione delle temperature di pozzo caldo e sorgente fredda

Ts,fredda	Tpozzo caldo						
[°C]	35,00	45,00	-	-	-	-	-
7,0	0,572	0,572	•	-	•	•	-
15,0	0,665	0,665	•	-	•	•	-
20,0	0,680	0,680	•	-	•	•	-
35,0	0,862	0,862	-	-	-	-	-

Potenza elettrica assorbita	0,00 W
	· · · · · · · · · · · · · · · · · · ·

Coefficiente di prestazione (COP)

Il dato è in funzione delle temperature di pozzo caldo e sorgente fredda

Ts,fredda	Tpozzo caldo						
[°C]	35,00	45,00	-	-	-	-	-
7,0	2,720	2,720	-	-	-	-	-
15,0	2,660	2,660	-	-	-	-	-
20,0	2,720	2,720	-	-	-	-	-
35,0	3,450	3,450	-	-	-	-	-

MACCHINA FRIGORIFERA

DAIKIN - EWWH335VZXSA1 DAIKIN - EWWH335VZXSA1

Tipo di pompa di calore (ambiente esterno/interno) Acqua di falda, fiume, mare o lago/Acqua

Temperatura dell'acqua in uscita: 7,00

Temperatura di ingresso dell'acqua al condensatore:30,00

Funzionamento pompa

Energia elettrica

Raffrescamento

POTENZE E PRESTAZIONI

per macchina frigorifera elettrica:

Fattore di carico	EER
100 %	5,67
75 %	6,99
50 %	8,61
25 %	9,37

Per macchina frigorifera ad as	sorbimento	
GUE -		
Potenza nominale	370,2 kW	
Potenza elettrica assorbita	0.00 W	

Per gli impianti termici con o senza produzione di acqua calda sanitaria, che utilizzano, in tutto o in parte, macchine diverse da quelle sopra descritte, le prestazioni di dette macchine sono fornite utilizzando le caratteristiche fisiche della specifica apparecchiatura, e applicando, ove esistenti, le vigenti norme tecniche.

c) Specifiche relative ai sistemi di regolazione dell'impianto termico

Tipo di conduzione invernal	-						
Continua con attenuazion	e notturna						
X Intermittente							
Tipo di conduzione estiva p	revista:						
Continua con attenuazion	e notturna						
X Intermittente							
Sistema di gestione dell'impia	anto termico						
Quadro comandi di centrale)						
Sistema di regolazione climat	ica in centrale termica (s	olo per imp	anti centraliz	zati)			
Centralina climatica Pres	sente						
Numero dei livelli di programr	mazione della temperatur	a nelle 24 d	ore cont	inua			
Regolatori climatici e disposit singole zone o unità immobili		omatica del	la temperatui	a ambiente	nei singo	oli locali o	nelle
Denominazione		Regolaz	ione	N	Descr	izione	Livelli
U.I.1-C. Auditorium	SIH2 Aeraulico		er singolo mbiente + climatica	1	temp	ulazion e della eratura andata	conti nua
N: numero apparecchi Livelli: Numero di livelli di progra d) Dispositivi per la contab		reddo nelle	singole uni	tà immobil	iari (solo	per impi	anti
centralizzati)							
Per Climatizzazione inverna	ile						
Numero di apparecchi)						
Descrizione sintetica dispositi	ivo						
Per Acqua Calda Sanitaria							
Numero di apparecchi (
Descrizione sintetica dispositi	ivo						
Per Climatizzazione estiva							
Numero di apparecchi)						
Descrizione sintetica dispositi	ivo						
e) Terminali di erogazione	dell'energia termica						
Elenco dei terminali di erogaz	ione dell'unità immobiliar	e					
Denominazione		N	Tipologia			P [W]	
U.I.1-C. Auditorium	SIH2 Aeraulico			te e diffuso id aria cald		:	30.435,8

N Numero di apparecchi **P** Potenza installata

f) Condotti di evacuazione dei prodotti della combustione Descrizione e caratteristiche principali
g) Sistemi di trattamento dell'acqua (tipo di trattamento) Descrizione e caratteristiche principali
h) Specifiche dell'isolamento termico della rete di distribuzione Tipologia, conduttività termica, spessore (vedi allegati alla relazione tecnica)
i) Schemi funzionali degli impianti termici In allegato sono inseriti schemi unifilari di impianto termico con specificato Posizionamento e la potenze dei terminali di erogazione – Allegato
Posizionamento e tipo dei generatori – Allegato
Posizionamento e tipo degli elementi di distribuzione – Allegato
Posizionamento e tipo degli elementi di controllo – Allegato
Posizionamento e tipo degli elementi di sicurezza – Allegato
5.2 Impianti fotovoltaici Nella modellazione dell'edificio sono presenti impianti fotovoltaici [X] Si [] No Descrizione con caratteristiche tecniche e schemi funzionali (vedi allegati alla relazione tecnica)
5.3 Impianti solari termici Nella modellazione dell'edificio sono presenti impianti solari termici [] Si [X] No Descrizione con caratteristiche tecniche e schemi funzionali (vedi allegati alla relazione tecnica)
5.4 Impianti di illuminazione Nella modellazione dell'edificio sono presenti impianti di illuminazione [X] Si [] No Descrizione con caratteristiche tecniche e schemi funzionali (vedi allegati alla relazione tecnica)
5.5 Altri impianti Altri impianti dell'edificio [X] Si [] No Descrizione con caratteristiche tecniche e schemi funzionali
Livello minimo di efficienza dei motori elettrici per ascensori e scale mobili
6 PRINCIPALI RISULTATI DEI CALCOLI
X Si dichiara che l'edificio oggetto della presente relazione può essere definito "edificio ad energia quasi zero" in quanto sono contemporaneamente rispettati
• tutti i requisiti previsti dalla lettera b), del comma 2, del paragrafo 3.3 del decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005, secondo i valori vigenti dal 1° gennaio 2019 per gli edifici pubblici e dal 1° gennaio 2021 per tutti gli altri edifici;

• gli obblighi di integrazione delle fonti rinnovabili nel rispetto dei principi minimi di cui all'allegato 3, paragrafo 1, lettera c), del decreto legislativo 3 marzo 2011, n.28.

g) Involucro edilizio e ricambi d'aria

Trasmittanza termica degli elementi divisori tra alloggi o unità immobiliari confinanti; confronto con i valori limite: (vedi allegati alla relazione tecnica).

Verifica termoigrometrica: (vedi allegati alla relazione tecnica).

Numero di ricambi d'aria (media nelle 24 ore): (vedi allegati alla relazione tecnica).

Portata d'aria di ricambio solo nei casi di ventilazione meccanica controllata: (vedi allegati alla relazione tecnica). Portata dell'aria circolante attraverso apparecchiature di recupero del calore disperso: (vedi allegati alla relazione tecnica).

Rendimento termico delle apparecchiature di recupero del calore disperso: (vedi allegati alla relazione tecnica).

h) Indici di prestazione energetica per la climatizzazione invernale ed estiva, per la produzione di acqua calda sanitaria, per la ventilazione e l'illuminazione

Determinazione dei seguenti indici di prestazione energetica, espressi in kWh/m² anno, così come definiti al paragrafo 3.3 dell'Allegato 1 del decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005, rendimenti e parametri che ne caratterizzano l'efficienza energetica.

Verifica coefficiente medio globale di scambio termico per trasmissione

Unità immobiliare	H'T [W/(m ² K)]	Limite	Verifica
Scuola Inveruno	0,158	0,75	SI

H'T: Coefficiente medio globale di scambio termico per trasmissione per unità di superficie disperdente (Tabella 10 appendice A)

Verifica area solare equivalente estiva dei componenti finestrati

Efficienza media stagionale dell'impianto di produzione di ACS ηW:

Unita immobiliare	Asol,est/Asup,utile	Limite	Verifica
Scuola Inveruno	0,016	0,04	SI
Verifica Indice di prestazione termica utile			
Indice di prestazione termica utile per la climatizzazione invernale EPH,nd		306,71	kWh/m ²

Indice di prestazione termica utile per la climatizzazione invernale EPH,nd	306,71	kWh/m ²
Indice di prestazione termica utile per la climatizzazione invernale calcolato		
nell'edificio di riferimento EPH,nd,limite:	326,87	kWh/m²
Verifica: Si		
Indice di prestazione termica utile per la climatizzazione estiva EPC,nd	0,00	kWh/m²
Indice di prestazione termica utile per la climatizzazione estiva calcolato		
nell'edificio di riferimento EPC,nd,limite:	0,00	kWh/m²
Verifica: No		
Verifica Indice di prestazione energetica globale dell'edificio		
Indice della prestazione energetica globale dell'edificio, espresso in energia		
primaria non rinnovabile EPgI,nr	113,30	kWh/m²
Indice della prestazione energetica globale dell'edificio EPgl,tot	294,08	kWh/m²
Indice di prestazione energetica globale dell'edificio calcolato nell'edificio di		
riferimento EPgl,tot,limite:	305,23	kWh/m²
Verifica: Si		
Verifica Efficienza media stagionale		
Efficienza media stagionale dell'impianto di riscaldamento ηH	1,494	
Efficienza media stagionale dell'impianto di riscaldamento calcolato		
nell'edificio di riferimento ηΗ,limite	1,304	
Verifica: Si		

0,718

Efficienza media stagionale dell'impianto di riscaldamento calcolato	
nell'edificio di riferimento ηW,limite	0,466
Verifica: Si	
Efficienza media stagionale dell'impianto di raffrescamento ηC	-
Efficienza media stagionale dell'impianto di raffrescamento calcolato nell'edificio di riferimento ηΗ,limite	
Verifica:	
i) Impianti solari termici per la produzione di acqua calda sanitaria	
Tipo collettore	
Tipo installazione -	
Descrizione tipo installazione (se altro)	
Tipo supporto	
Descrizione tipo supporto (se altro)	
Inclinazione -°	
Orientamento -	
Capacità accumulo 0 I	
Impianto integrazione (specificare tipo e alimentazione)	
Percentuale copertura fabbisogno annuo 0,0 %	
j) Impianti fotovoltaici	
Connessione impianto: Grid connected	
Tipo moduli Silicio monocristallino con potenza del singolo modul	lo pari a 360 W
Tipo installazione Parzialmente integrati	
Descrizione tipo installazione (se altro)	
Tipo supporto Metallico	
Descrizione tipo supporto (se altro)	
Inclinazione 18°	
Orientamento 45	

e) Consuntivo energia

Energia prodotta in sito

- 3 · 1 · · · · · · · · · · · · · · · · ·		
Vettore energetico	Udm	Qdel
Energia elettrica da solare fotovoltaico	н	2.792,85
Energia elettrica da solare fotovoltaico	W	2.292,07
Energia elettrica da solare fotovoltaico	С	1.162,10
Energia elettrica da solare fotovoltaico	L	4.977,72
Energia elettrica da solare fotovoltaico	V	3.470,08
Energia elettrica da solare fotovoltaico	Т	548,96

Energia termica da solare termico	Н	0,00
Energia termica da solare termico	W	0,00
Energia termica da solare termico	С	0,00
Energia termica da solare termico	L	0,00
Energia termica da solare termico	V	0,00
Energia termica da solare termico	Т	548,96

Energia consegnata dall'esterno

Vettore energetico	Udm	Qdel
Energia elettrica da rete	Н	15.875,97
Energia elettrica da rete	W	1.172,14
Energia elettrica da rete	С	113,63
Energia elettrica da rete	L	2.470,24
Energia elettrica da rete	V	8.205,63
Energia elettrica da rete	Т	272,53

Energia esportata

1		
Vettore energetico	Udm	Qdel
Energia elettrica da rete	H	0,00
Energia elettrica da rete	W	978,70
Energia elettrica da rete	С	51,46
Energia elettrica da rete	L	2.136,46
Energia elettrica da rete	V	73,78
Energia elettrica da rete	Т	235,56

Energia primaria

Indice di prestazione rinnovabile diviso per servizio

Servizio	EPren [kWh/m²]
Н	141,35
W	12,84
С	2,41
L	8,27
V	14,99
Т	0,91

Indice di prestazione non rinnovabile diviso per servizio

Servizio	EPnren [kWh/m²]
Н	63,99
W	4,72
С	0,46
L	9,96
V	33,07
Т	1,10

Indice di prestazione globale diviso per servizio

Servizio	EPnren [kWh/m²]	
Н		205,34
W		17,57

С	2,86
L	18,23
V	48,06
Т	2,01

f) Valutazione della fattibilità tecnica, ambientale ed economica per l'inserimento di sistemi ad alta efficienza

Vedi allegati alla relazione tecnica

7 ELEMENTI SPECIFICI CHE MOTIVANO EVENTUALI DEROGHE A NORME FISSATE DALLA NORMATIVA VIGENTE

8 DOCUMENTAZIONE ALLEGATA Piante di ciascun piano degli edifici con orientamento e indicazione d'uso prevalente dei singoli locali e definizione degli elementi costruttivi. Prospetti e sezioni degli edifici con evidenziazione dei sistemi fissi di protezione solare e definizione degli elementi costruttivi. Elaborati grafici relativi ad eventuali sistemi solari passivi specificatamente progettati per favorire lo sfruttamento degli apporti solari. Schemi funzionali degli impianti contenenti gli elementi di cui all'analoga voce del paragrafo 'Dati relativi agli impianti punto 5.1 lettera i' e dei punti 5.2, 5.3, 5.4, 5.5 Tabelle con indicazione delle caratteristiche termiche, termo igrometriche e della massa efficace dei componenti opachi dell'involucro edilizio con verifica dell'assenza di rischio di formazione di muffe e di condensazioni interstiziali. Tabelle con indicazione delle caratteristiche termiche, termo igrometriche e della massa efficace della loro permeabilità all'aria. Schede con indicazione della valutazione della fattibilità tecnica, ambientale ed economica per l'inserimento di sistemi alternativi ad alta efficienza. Schede con indicazione della valutazione della fattibilità tecnica, ambientale ed economica per l'inserimento Altri eventuali allegati non obbligatori: 9 DICHIARAZIONE DI RISPONDENZA Il sottoscritto Ing. Paolo Oliaro, iscritto a Ordine degli Ingegneri di Milano, nº 24252, essendo a conoscenza delle sanzioni previste dall'articolo 15, commi 1 e 2, del decreto legislativo 192/2005 **DICHIARA** sotto la propria personale responsabilità che: a) il progetto relativo alle opere di cui sopra è rispondente alle prescrizioni contenute dal decreto legislativo 192/2005 nonché dal decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005; b) il progetto relativo alle opere di cui sopra rispetta gli obblighi di integrazione delle fonti rinnovabili secondo i principi minimi e le decorrenze di cui all'allegato 3, paragrafo 1, lettera c), del decreto legislativo 3 marzo 2011, n.28: c) i dati e le informazioni contenuti nella relazione tecnica sono conformi a quanto contenuto o desumibile dagli elaborati progettuali Data Firma

17/01/2020

PROGETTO DELL'ISOLAMENTO

Il calcolo di progetto per l'isolamento dell'involucro dell'edificio ed il conseguente calcolo del carico termico di progetto è condotto in conformità alla UNI EN 12381 – 2006.

COEFFICIENTI DI DISPERSIONE

Di seguito si riportano gli elementi che costituiscono l'involucro del sistema edificio/impianto con i rispettivi valori di trasmittanza termica U. U' rappresenta la trasmittanza di un elemento opaco valutata comprendendo l'influenza degli eventuali ponti termici associati. A ciascuna voce viene associato il limite da normativa e l'esito della relativa verifica.

Inveruno_CV03a (PA0020)	Strutture verticali opache	Trasmittanza U	Trasmittanza corretta U'	Trasmittanza limite Ulimite	Verifica
Inveruno_CV03b (PA0026)	Inverting CV/03a (PA0030)				QI .
Inveruno_CV03c (PA0023)		,	·	-,	_
Strutture orizzontali opache di pavimento	_ , ,	,	*	*	_
Trasmittanza U Corretta U' Limite Ulimite W/(m²K) U/(m²K) U/(m²K	Inveruno_CV03c (PA0023)	0,184	0,184	0,260	SI
Inveruno_CO03 (PV0007)	Strutture orizzontali opache di pavimento		corretta U'	limite Ulimite	Verifica
Strutture orizzontali opache di copertura Trasmittanza U					
Trasmittanza U Corretta U' Ilimite Ulimite W/(m²K)	Inveruno_CO03 (PV0007)	0,042	0,042	0,260	SI
Verifica non richiesta Trasmittanza U Trasmittanza Verifica	Strutture orizzontali opache di copertura	Trasmittanza U	corretta U'	limite Ulimite	Verifica
Elementi trasparenti Trasmittanza U U Ulimite		W/(m ² K)	W/(m ² K)	W/(m ² K)	
Trasmittanza U limite Ulimite W/(m²K)	Verifica non richiesta				
Serramenti Trasmittanza U Imite Ulimite Ulimi	Elementi trasparenti	Trasmittanza U		Verifica	
Serramenti Trasmittanza U W/(m²K) Verifica Verifica non richiesta Trasmittanza U W/(m²K) Trasmittanza corretta U' W/(m²K) Trasmittanza limite Ulimite W/(m²K) Verifica Strutture verso il terreno Trasmittanza U W/(m²K) Trasmittanza limite Ulimite W/(m²K) Verifica Verifica Trasmittanza limite Ulimite W/(m²K) Verifica Verifica Trasmittanza lineica ψi W/(mK) Trasmittanza lineica ψi W/(mK) Trasmittanza lineica ψi W/(mK) Inneica ψi W/(mK)		W/(m ² K)	W/(m ² K)		
Serramenti Trasmittanza U W/(m²K) Verifica Verifica non richiesta Trasmittanza U W/(m²K) Trasmittanza corretta U' W/(m²K) Trasmittanza limite Ulimite W/(m²K) Verifica Strutture verso il terreno Trasmittanza U W/(m²K) Trasmittanza limite Ulimite W/(m²K) Verifica Verifica Trasmittanza limite Ulimite W/(m²K) Verifica Verifica Trasmittanza lineica ψi W/(mK) Trasmittanza lineica ψi W/(mK) Trasmittanza lineica ψi W/(mK) Inneica ψi W/(mK)	-				
Verifica non richiesta Trasmittanza U W/(m²K) Trasmittanza corretta U' W/(m²K) Trasmittanza limite Ulimite W/(m²K) Verifica Strutture verso il terreno Trasmittanza U W/(m²K) Trasmittanza limite Ulimite W/(m²K) Verifica Ponti termici Trasmittanza lineica ψi W/(mK) Trasmittanza lineica ψoi W/(mK) Trasmittanza lineica ψe W/(mK)	Serramenti	Trasmittanza U		Verifica	
Partizioni interne verticali ed orizzontali Trasmittanza U W/(m²K) Verifica non richiesta Trasmittanza U W/(m²K) Trasmittanza U W/(m²K) Trasmittanza U W/(m²K) Trasmittanza U Imite Ulimite W/(m²K) Verifica Trasmittanza U W/(m²K) Trasmittanza U Imite Ulimite W/(m²K) Trasmittanza U W/(m²K) Trasmittanza Imeica ψi W/(mK) W/(mK) Trasmittanza Ineica ψi W/(mK) W/(mK)		W/(m ² K)	W/(m ² K)		
Partizioni interne verticali ed orizzontali Trasmittanza U corretta U' W/(m²K) Verifica non richiesta Strutture verso il terreno Trasmittanza U W/(m²K) Verifica Trasmittanza Iineica ψi W/(mK) W/(mK) W/(mK)	Verifica non richiesta				
Strutture verso il terreno Trasmittanza U W/(m²K) Trasmittanza limite Ulimite W/(m²K) Verifica Verifica non richiesta Trasmittanza lineica ψi W/(mK) Trasmittanza lineica ψοί W/(mK) Trasmittanza lineica ψοί W/(mK) Trasmittanza lineica ψοί W/(mK)	Partizioni interne verticali ed orizzontali	Trasmittanza U			Verifica
Strutture verso il terreno Trasmittanza U W/(m²K) Trasmittanza limite Ulimite W/(m²K) Verifica Verifica non richiesta Trasmittanza lineica ψi W/(mK) Trasmittanza lineica ψοί W/(mK) Trasmittanza lineica ψοί W/(mK) Trasmittanza lineica ψοί W/(mK)		W/(m ² K)	W/(m ² K)	W/(m ² K)	
Ponti termici Trasmittanza U W/(m²K) limite Ulimite W/(m²K) Verifica Imite Ulimite W/(m²K) W/(m²K) Verifica	Verifica non richiesta				
Ponti termici Trasmittanza lineica ψi lineica ψο lineica ψe W/(mK) W/(mK) Trasmittanza lineica ψο W/(mK) W/(mK)	Strutture verso il terreno	Trasmittanza U		Verifica	
Ponti termici Trasmittanza lineica ψi lineica ψοi W/(mK) Trasmittanza lineica ψοi W/(mK) W/(mK) W/(mK)		W/(m ² K)	W/(m ² K)		
Ponti termici lineica ψi lineica ψοί lineica ψe W/(mK) W/(mK) W/(mK)	Verifica non richiesta				
	Ponti termici	lineica ψi	lineica ψοί	lineica ψe	
	Verifica non richiesta	, ,	` ,	` '	

DISPERSIONI PER TRASMISSIONE

I coefficienti di maggiorazione percentuale a seconda dell'esposizione delle strutture verticali sono valutati con riferimento alla norma UNI EN 12831 - 2006, paragrafo 6 dell'appendice NA (prospetto NA.3 a).

C. Auditorium - 001.Sala - Δ9progetto = 25,0 °C

Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	ΦТ
	dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W]
Inveruno_CO03	Terreno	-	1,00	364,73	0,042	15,43	0,51	196,51
Inveruno_CV03a	Esterno	NE	1,20	137,38	0,153	20,96	1,00	628,96
Inveruno_CV03b	Esterno	SW	1,05	27,23	0,158	4,30	1,00	112,84
ED1_P-1_120x210	Esterno	NE	1,20	4,50	1,400	6,30	1,00	189,08
ED1_P-1_120x210	Esterno	NW	1,15	2,25	1,400	3,15	1,00	90,60
ED1_P-1_120x210	Esterno	SE	1,10	2,25	1,400	3,15	1,00	86,66

TOTALE C. Auditorium - 001.Sala

C. Auditorium - 002. Atrio - Δ9progetto = 25,0 °C

Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	ФΤ
	dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W]
ED1-2_170x260	Esterno	SW	1,05	26,52	1,400	37,13	1,00	975,05
Inveruno_CV03a	Esterno	SW	1,05	61,46	0,153	9,38	1,00	246,21

TOTALE C. Auditorium - 002. Atrio

C. Auditorium - 003. Scala - ∆9progetto = 25,0 °C

Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	ΦТ
	dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W]
Inveruno_CV03a	Esterno	SE	1,10	187,14	0,153	28,55	1,00	785,37
	<u> </u>	·		-	-	-		-

TOTALE C. Auditorium - 003. Scala 785,37

C. Auditorium - 004. Ascensore - Δ9progetto = 25,0 °C

Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	ΦТ
	dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W]
Inveruno_CV03c	Esterno	NW	1,15	22,78	0,184	4,20	1,00	120,78

TOTALE C. Auditorium - 004. Ascensore 120,78

C. Auditorium - 009. Ballatoio - Δ9progetto = 25.0 °C

Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	ΦТ
	dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W]
Inveruno_CV03a	Esterno	NW	1,15	137,08	0,153	20,91	1,00	601,43

TOTALE C. Auditorium - 009. Ballatoio 601,43

C. Auditorium - 006. Atrio P1 - Δ9progetto = 25,0 °C

Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	ΦТ
	dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W]
Inveruno_CV03b	Esterno	NW	1,15	47,68	0,158	7,52	1,00	216,41

TOTALE C. Auditorium - 006. Atrio P1 216,41

Or Orientamento cardinale dell'elemento

e Coefficiente di maggiorazione della dispersione in funzione dell'orientamento [%]

An o I Area strutture al netto degli elementi in detrazione $[m^2]$ o lunghezza per i ponti termici [m] U o ψ Trasmittanza per le strutture $[W/(m^2K)]$ o trasmittanza lineica per i ponti termici [W/(mK)]

Hix Coefficiente di scambio termico della struttura verso l'ambiente x [W/K]
btr,x Fattore di riduzione equivalente dello scambio termico verso l'ambiente x [-]

H Coefficiente di scambio termico per trasmissione

 $\Phi \qquad \qquad \text{Potenza termica dispersa per trasmissione in condizioni di progetto [W]}$

DISPERSIONI PER VENTILAZIONE

Scuola Inveruno

Volume netto totale dell'edificio Vn: 2.272,9 m³

Descrizione dell'ambiente	Ricambio d'aria effettivo	Portata d'aria ricambiata dall'impianto di ventilazione meccanica	Portata d'aria circolante attraverso apparecchi di recupero del calore	Rendimento termico degli apparecchi di recupero del calore
		m ³ /h	m ³ /h	%
=				

Zona: C. Auditorium

Locale	Vn	V'i	HV	Δθр	ФV
		[m ³ /h]	[W/K]	[°C]	[W]
001.Sala	1.495,9	748,0	254,3	25,0	6.360,4
002. Atrio	193,3	96,7	32,9	25,0	821,9
003. Scala	45,9	23,0	7,8	25,0	195,2
004. Ascensore	28,6	14,3	4,9	25,0	121,6
009. Ballatoio	263,5	131,8	44,8	25,0	1.120,4
006. Atrio P1	196,3	98,2	33,4	25,0	834,6
003.a Scala P1	49,4	24,7	8,4	25,0	210,0

Totale Scuola Inveruno	1.136,5	386,4	-	9.664,2

VnVolume netto del singolo localeHVCoefficiente globale di scambio termico per ventilazioneV'iPortata d'aria effettiva di ventilazione per singolo localeΦVPotenza termica dispersa per ventilazione in condizioni diΔ9pSalto termico di progetto verso l'esternoprogetto

POTENZA TERMICA DI RIPRESA

Scuola Inveruno

Zona: C. Auditorium - fRH = 18,0 W/m2

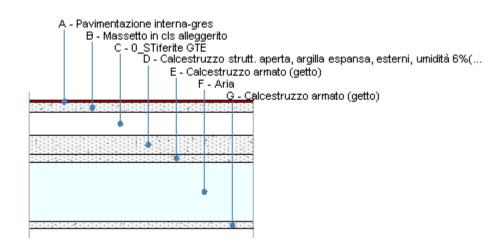
Locale	Su	ΦRH
	[m ²]	[W]
001.Sala	222,6	4.007,0
002. Atrio	64,5	1.160,1
003. Scala	13,3	239,6
004. Ascensore	4,3	76,5
009. Ballatoio	99,4	1.789,7
006. Atrio P1	65,5	1.178,1
003.a Scala P1	14,3	257,6

Totale Scuola Inveruno 483,8 8.7		
	483,8	8.708,6

fRH Fattore di ripresa

Su Superficie utile netta del locale ΦRH Potenza termica di ripresa

DISPERSIONI DI PROGETTO E CARICO TERMICO TOTALE


Scuola Inveruno

Zona riscaldata	ΦТ	ФУ	ФRН	ФНL
	[W]	[W]	[W]	[W]
C. Auditorium	4.249,92	9.664,17	8.708,58	22.622,67

Totale Scuola Inveruno	4.249,92	9.664,17	8.708,58	22.622,67
------------------------	----------	----------	----------	-----------

Φτ Potenza termica dispersa per trasmissione in condizioni di progetto
 Φν Potenza termica dispersa per ventilazione in condizioni di progetto
 ΦRH Potenza termica di ripresa

ΦRH Potenza termica di ripresaΦHL Carico termico totale

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: Inveruno_CO03

Note:

Tipologia:	<u>Pavimento</u>	Disposizione:	<u>Orizzontale</u>
Verso:	<u>Terreno</u>	Spessore:	<u>860,0</u> mm
Trasmittanza U:	0,042 W/(m ² K)	Resistenza R:	23,638 (m ² K)/W
Massa superf.:	479 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato		Conduttività	Resistenza	Densità	Capacità term.	Fattore	Fattore
	Strato	s	λ	R	ρ	С	μа	μи
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso verticale discendente)	-	-	0,170	-	-	-	-
Α	Pavimentazione interna-gres	10,0	1,470	0,007	1.700	1,00	0,0	999.99 9,0
В	Massetto in cls alleggerito	70,0	1,080	0,065	1.600	1,00	3,3	3,3
С	0_STiferite GTE	150,0	0,022	6,818	34	1,40	89.900 ,0	89.900 ,0
D	Calcestruzzo strutt. aperta, argilla espansa, esterni, umidità 6%(800 kg/m3)	130,0	0,260	0,500	800	0,88	5,6	3,3
E	Calcestruzzo armato (getto)	50,0	1,910	0,026	2.400	1,00	0,0	999.99 9,0
F	Aria	400,0	0,025	16,026	1	1,01	1,0	1,0
G	Calcestruzzo armato (getto)	50,0	1,910	0,026	2.400	1,00	0,0	999.99 9,0
	TOTALE	860,0		23,638				

Conduttanza unitaria superficiale interna: 5,880 W/(m²K)

Resistenza unitaria superficiale interna: 0,170 (m²K)/W

Conduttanza unitaria superficiale esterna: 0,000 W/(m²K)

Resistenza unitaria superficiale esterna: 0,000 (m²K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	<u>Inveruno</u>	Zona climatica:	<u>E</u>
Trasmittanza della struttura U:	0,042 W/(m ² K)	Trasmittanza limite Ulim:	0,578 W/(m ² K)

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

ESITO VERIFICA DI TRASMITTANZA: -

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	<u>Inveruno</u>	Tipo di calcolo:	Classi di concentrazione		
Verso:	<u>Terreno</u>	Coeff. di correzione btr,x:			
Class di adificia	Edifici con indice di affollamento non	Maluma a intama a Ma	3		
Classe di edificio:	noto	Volume interno V:	- m ³		
Produz. nota di vapore G:	- kg/h				

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	℃	%	1/h
gennaio	20,0	-	11,2	100,0	0,5
febbraio	20,0	-	11,2	100,0	0,5
marzo	20,0	-	11,2	100,0	0,5
aprile	20,0	-	11,2	100,0	0,5
maggio	20,0	-	11,2	100,0	0,5
giugno	20,0	-	11,2	100,0	0,5
luglio	20,0	-	11,2	100,0	0,5
agosto	20,0	-	11,2	100,0	0,5
settembre	20,0	-	11,2	100,0	0,5
ottobre	20,0	-	11,2	100,0	0,5
novembre	20,0	-	11,2	100,0	0,5
dicembre	20,0	-	11,2	100,0	0,5

CONDIZIONE	Temperatura interna θi	Pressione parziale interna pi	Temperatura esterna θe	Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	11,20	1.331,00
ESTIVA	20,00	865,20	11,20	1.331,00

X	La struttura non è soggetta a fenomeni di condensa interstiziale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 584,991 Pa.
	La struttura è soggetta a fenomeni di condensa.
	La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).
×	La struttura non è soggetta a fenomeni di condensa superficiale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 584,991 Pa.

VERIFICA FORMAZIONE MUFFE SUPERFICIALI

CONDIZIONI AL CONTORNO INTERNE ED ESTERNE

	Temperatura esterna Te	Pressione esterna Pe	Variazione di pressione ΔP	Pressione interna Pi	Temperatura interna Ti	Umidità relativa interna φi
Mese	°C	Pa	Pa	Pa	°C	%
ottobre	11,2	1331,03	411,81	1742,83	20	100
novembre	11,2	1331,03	411,81	1742,83	20	100
dicembre	11,2	1331,03	411,81	1742,83	20	100
gennaio	11,2	1331,03	411,81	1742,83	20	100
febbraio	11,2	1331,03	411,81	1742,83	20	100
marzo	11,2	1331,03	411,81	1742,83	20	100
aprile	11,2	1331,03	411,81	1742,83	20	100

CALCOLO DEL FATTORE DI RISCHIO

La verifica della formazione di muffa è eseguita in maniera conforme a quanto riportato nella norma UNI EN ISO 13788

	Temperatura superficiale critica T _S i-critica	Fattore di rischio ammissibile frsi- amm
Mese	°C	-

ottobre	18,87	0,8715
novembre	18,87	0,8715
dicembre	18,87	0,8715
gennaio	18,87	0,8715
febbraio	18,87	0,8715
marzo	18,87	0,8715
aprile	18,87	0,8715

Riepilogo dei risultati:

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione

Fattore di resistenza superficiale fRsi: 0,8715 (mese di Ottobre)

Fattore di resistenza superficiale ammissibile massimo fRsiAmm: 0,9945

ESITO VERIFICA DI MUFFA: OK

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8
	2.327,5	2.327,5	2.327,5	2.327,5	2.327,5	2.327,5	2.327,5	2.327,5	2.327,5	2.327,5	2.327,5	2.327,5
A-B	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8	1.742,8
	2.324,0	2.324,0	2.324,0	2.324,0	2.324,0	2.324,0	2.324,0	2.324,0	2.324,0	2.324,0	2.324,0	2.324,0
B-C	1.331,1	1.331,1	1.331,1	1.331,1	1.331,1	1.331,1	1.331,1	1.331,1	1.331,1	1.331,1	1.331,1	1.331,1
	1.983,4	1.983,4	1.983,4	1.983,4	1.983,4	1.983,4	1.983,4	1.983,4	1.983,4	1.983,4	1.983,4	1.983,4
C-D	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0
	1.960,2	1.960,2	1.960,2	1.960,2	1.960,2	1.960,2	1.960,2	1.960,2	1.960,2	1.960,2	1.960,2	1.960,2
D-E	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0
	1.959,0	1.959,0	1.959,0	1.959,0	1.959,0	1.959,0	1.959,0	1.959,0	1.959,0	1.959,0	1.959,0	1.959,0
E-F	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0
	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9	1.331,9
F-Esterno	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0
	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0	1.331,0

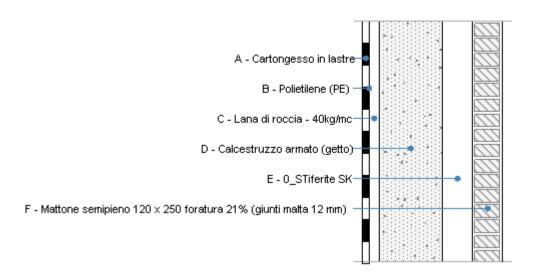
TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9
A-B	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9
B-C	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9
C-D	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4	17,4
D-E	17,2	17,2	17,2	17,2	17,2	17,2	17,2	17,2	17,2	17,2	17,2	17,2
E-F	17,2	17,2	17,2	17,2	17,2	17,2	17,2	17,2	17,2	17,2	17,2	17,2
F-Esterno	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2
F-Esterno	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2	11,2

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. E/F												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]												

Verifica di condensa interstiziale:


Quantità massima di vapore accumulato mensilmente Gc: 0,0000 (mese di -) kg/m 2 nell'interfaccia -

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia $G_{c,max}$: 0,5000 kg/m 2

Quantità di vapore residuo Ma: 0,0000 (mese di -) kg/m² nell'interfaccia -

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA febbiáo mairo tá tá Gennaio Febbraio Marzo арі le тадаја giugna <u>t</u> ti ti, Aprile Maggio Giugno settem bie lugia agasto tá tá Ħ Luglio Agosto Settembre dcemble attable navem Die tá Ottobre Novembre Dicembre LEGENDA Temperatura [°C] Pressione del vapore [Pa] Press. di saturazione [Pa]

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: Inveruno_CV03a

Note:

Tipologia:	<u>Parete</u>	Disposizione:	<u>Verticale</u>
Verso:	<u>Esterno</u>	Spessore:	<u>556,0</u> mm
Trasmittanza U:	0,153 W/(m ² K)	Resistenza R:	6,556 (m ² K)/W
Massa superf.:	845 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore	Conduttività	Resistenza	Densità	Capacità term.	Fattore	Fattore
	Strato	s	λ	R	ρ	С	μа	μи
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-	-
Α	Cartongesso in lastre	25,0	0,210	0,119	900	1,30	8,7	8,7
В	Polietilene (PE)	1,0	0,350	0,003	950	2,30	54.054 ,1	54.054 ,1
С	Lana di roccia - 40kg/mc	40,0	0,035	1,143	40	1,03	1,0	1,0
D	Calcestruzzo armato (getto)	250,0	1,910	0,131	2.400	1,00	0,0	999.99 9,0
Е	0_STiferite SK	120,0	0,025	4,800	35	1,40	56,0	56,0
F	Mattone semipieno 120 x 250 foratura 21% (giunti malta 12 mm)	120,0	0,632	0,190	1.800	1,00	10,0	5,0
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-	-	-	_
	TOTALE	556,0		6,556				

Conduttanza unitaria superficiale interna: 7,690 W/(m²K)

Resistenza unitaria superficiale interna: 0,130 (m²K)/W

Conduttanza unitaria superficiale esterna: 25,000 W/(m²K)

Resistenza unitaria superficiale esterna: 0,040 (m²K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	<u>Inveruno</u>	Zona climatica:	<u>E</u>
Trasmittanza della struttura U:	0,153 W/(m ² K)	Trasmittanza limite Ulim:	0,260 W/(m ² K)

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

ESITO VERIFICA DI TRASMITTANZA: -

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	<u>Inveruno</u>	Tipo di calcolo:	Classi di concentrazione
Verso:	<u>Esterno</u>	Coeff. di correzione btr,x:	
Classe di adificio	Edifici con indice di affollamento non	Valuma interna V	3
Classe di edificio:	noto	Volume interno V:	- m ³
Produz. nota di vapore G:	- kg/h		

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	-	-0,1	84,9	0,5
febbraio	20,0	-	3,4	74,0	0,5
marzo	20,0	-	7,0	63,4	0,5
aprile	20,0	-	10,3	66,4	0,5
maggio	20,0	-	16,2	72,9	0,5
giugno	20,0	-	20,3	70,5	0,5
luglio	20,0	-	21,0	64,3	0,5
agosto	20,0	-	20,9	66,1	0,5
settembre	20,0	-	17,0	71,8	0,5
ottobre	20,0	-	11,4	90,7	0,5
novembre	20,0	-	5,9	94,7	0,5
dicembre	20,0	-	1,3	85,6	0,5

CONDIZIONE	Temperatura interna θi	Pressione parziale interna pi	Temperatura esterna θe	Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	-0,10	514,20
ESTIVA	20,00	1.615,60	21,00	1.597,60

X	La struttura non è soggetta a fenomeni di condensa interstiziale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 571,025 Pa.
	La struttura è soggetta a fenomeni di condensa.
	La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).
×	La struttura non è soggetta a fenomeni di condensa superficiale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 571,025 Pa.

VERIFICA FORMAZIONE MUFFE SUPERFICIALI

CONDIZIONI AL CONTORNO INTERNE ED ESTERNE

	Temperatura esterna Te	Pressione esterna Pe	Variazione di pressione ΔP	Pressione interna Pi	Temperatura interna Ti	Umidità relativa interna φi
Mese	°C	Pa	Pa	Pa	°C	%
ottobre	11,4	1221,38	405,3	1626,68	20	91
novembre	5,9	878,74	600,55	1479,29	20	95
dicembre	1,3	574,43	763,85	1338,28	20	86
gennaio	-0,1	514,17	810	1324,17	20	85
febbraio	3,4	576,19	689,3	1265,49	20	74
marzo	7,0	634,73	561,5	1196,23	20	63
aprile	10,3	831,79	444,35	1276,14	20	66

CALCOLO DEL FATTORE DI RISCHIO

La verifica della formazione di muffa è eseguita in maniera conforme a quanto riportato nella norma UNI EN ISO 13788

	Temperatura superficiale critica Tsi-critica	Fattore di rischio ammissibile frsi- amm
Mese	°C	-

ottobre	17,77	0,7408
novembre	16,27	0,7356
dicembre	14,71	0,7171
gennaio	14,55	0,7287
febbraio	13,85	0,6293
marzo	12,98	0,4602
aprile	13,98	0,3789

Riepilogo dei risultati:

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione

Fattore di resistenza superficiale fRsi: 0,7408 (mese di Ottobre)

Fattore di resistenza superficiale ammissibile massimo fRsiAmm: 0,9802

ESITO VERIFICA DI MUFFA: OK

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.324,2	1.265,5	1.196,2	1.276,1	1.577,5	1.766,8	1.662,1	1.700,1	1.596,5	1.626,7	1.479,3	1.338,3
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.321,3	1.263,1	1.194,3	1.274,6	1.576,6	1.766,5	1.661,9	1.699,9	1.595,7	1.625,3	1.477,2	1.335,6
	2.228,7	2.247,3	2.266,4	2.284,2	2.316,1	2.338,6	2.342,5	2.341,9	2.320,5	2.290,1	2.260,6	2.236,1
A-B	617,8	664,4	706,6	888,6	1.372,6	1.688,9	1.605,8	1.640,8	1.416,4	1.273,2	955,6	672,1
	2.227,5	2.246,2	2.265,6	2.283,6	2.315,9	2.338,6	2.342,5	2.342,0	2.320,3	2.289,6	2.259,7	2.235,0
B-C	617,3	663,9	706,2	888,3	1.372,5	1.688,8	1.605,8	1.640,7	1.416,2	1.273,0	955,2	671,6
	1.785,4	1.872,3	1.965,6	2.054,6	2.222,5	2.346,2	2.367,9	2.364,8	2.246,2	2.085,0	1.936,7	1.819,8
C-D	617,3	663,9	706,2	888,3	1.372,5	1.688,8	1.605,8	1.640,7	1.416,2	1.273,0	955,2	671,6
	1.740,1	1.833,2	1.933,5	2.029,7	2.212,0	2.347,1	2.370,8	2.367,4	2.237,8	2.062,6	1.902,4	1.776,8
D-E	529,8	589,5	645,6	840,4	1.347,1	1.679,2	1.598,8	1.633,4	1.393,9	1.229,2	890,3	589,2
	637,9	811,8	1.033,1	1.281,0	1.856,3	2.379,2	2.480,2	2.465,6	1.949,6	1.374,5	960,5	703,1
E-F	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	611,5	784,8	1.006,8	1.257,2	1.843,3	2.380,4	2.484,7	2.469,5	1.938,9	1.352,0	933,7	676,3
F-Add	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	605,5	779,2	1.001,3	1.252,2	1.840,6	2.380,7	2.485,6	2.470,4	1.936,6	1.347,3	928,2	670,7

TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	19,6	19,7	19,7	19,8	19,9	20,0	20,0	20,0	19,9	19,8	19,7	19,6
A-B	19,2	19,4	19,5	19,6	19,9	20,0	20,0	20,0	19,9	19,7	19,5	19,3
B-C	19,2	19,4	19,5	19,6	19,9	20,0	20,0	20,0	19,9	19,7	19,5	19,3
C-D	15,7	16,5	17,2	17,9	19,2	20,1	20,2	20,2	19,4	18,2	17,0	16,0
D-E	15,3	16,1	17,0	17,7	19,1	20,1	20,2	20,2	19,3	18,0	16,7	15,6
E-F	0,6	4,0	7,5	10,6	16,3	20,3	21,0	20,9	17,1	11,7	6,4	2,0
F-Add	0,0	3,5	7,1	10,4	16,2	20,3	21,0	20,9	17,0	11,5	6,0	1,4
Add-Esterno	-0,1	3,4	7,0	10,3	16,2	20,3	21,0	20,9	17,0	11,4	5,9	1,3

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. E/F												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]												

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente Gc: 0,0000 (mese di -) kg/m^2 nell'interfaccia -

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia $G_{c,max}$: 0,5000 kg/m 2

Quantità di vapore residuo Ma: 0,0000 (mese di -) kg/m² nell'interfaccia -

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA Fl^{2,500} p2.500 p2.500 20_F 2,000 12,000 2,000 1.500 1500 1.500 1,000 1,000 Febbraio Marzo Gennaio арі le т*а*доја giugna 2.500 2,000 2.000 1,500 H1.500 H1.000 1,000 El₅₀₀ E]500 Aprile Maggio Giugno settemble lugia agasto 2.500 2000 1.500 1,000 E|500 Luglio Agosto Settembre dæmbe attable navem Die 2.000 2,000 5 1.500 1500 1500 H1.000 H1.000 1,000 Ottobre Novembre Dicembre LEGENDA Temperatura [°C] Pressione del vapore [Pa] Press. di saturazione [Pa]

VERIFICA DI MASSA E INERZIA TERMICA

Il comportamento termico dinamico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13786.

Verifica di massa:

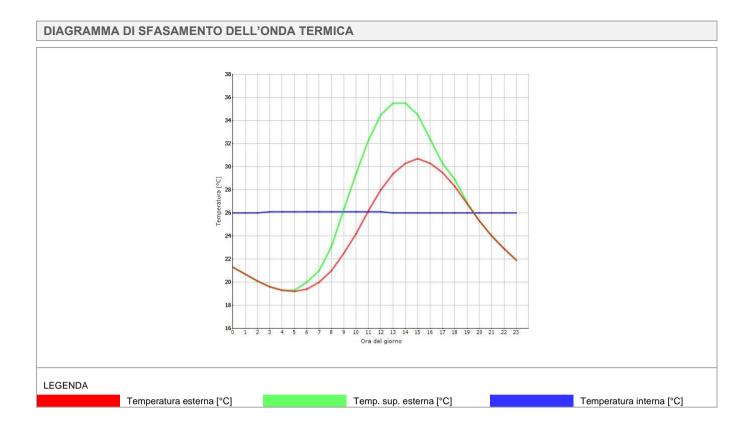
Massa della struttura per metro quadrato di superficie: 845 kg/m²

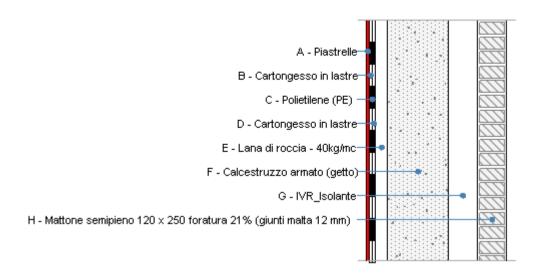
Valore minimo di massa superficiale: 230 kg/m 2

ESITO VERIFICA DI MASSA: OK

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

CONDIZIONI AL CONTORNO


Comune:	Inveruno	Colorazione:	<u>Chiaro</u>
Orientamento:	<u>s</u>	Mese massima insolazione:	luglio
Temp. media mese massima insolaz.:	24,3 °C	Temperatura massima estiva:	30,7 °C
Escursione giorno più caldo dell'anno:	11,5 °C	Irradian. mensile massima piano orizz.:	275,46 W/m ²


INERZIA TERMICA

Tempo sfasamento dell'onda termica:	17h 22'	Fattore di attenuazione:	0,0082
Capacità termica interna C1:	27,4 kJ/(m ² /K)	Capacità termica esterna C2:	108,9 kJ/(m ² /K)
Ammettenza interna oraria:	15,4 W/(m ² /K)	Ammettenza interna in modulo:	2,0 W/(m ² /K)
Ammettenza esterna oraria:	14,5 W/(m ² /K)	Ammettenza esterna in modulo:	7,9 W/(m ² /K)
Trasmittanza termica periodica Y:	0,001 W/(m ² K)	Classificazione struttura da normativa:	
Trasmitt. termica periodica limite Ylim:	0,100 W/(m ² K)		

ESITO VERIFICA DI INERZIA: OK

	Temperatura esterna nel giorno più caldo Te	Irradiazione solare nel giorno più caldo dell'anno le	Temp. superficiale esterna nel giorno più caldo Te,sup	Temperatura interna nel giorno più caldo Ti
Ora	°C	W/m²	°C	°C
0:00	21,26	0,00	21,26	26,01
1:00	20,68	0,00	20,68	26,02
2:00	20,11	0,00	20,11	26,05
3:00	19,65	0,00	19,65	26,08
4:00	19,30	0,00	19,30	26,10
5:00	19,19	10,00	19,31	26,12
6:00	19,42	49,00	20,01	26,13
7:00	19,99	85,75	21,02	26,13
8:00	21,03	173,00	23,10	26,12
9:00	22,52	315,75	26,31	26,10
10:00	24,25	432,75	29,44	26,08
11:00	26,20	508,25	32,30	26,07
12:00	28,04	534,25	34,45	26,05
13:00	29,42	508,25	35,52	26,04
14:00	30,34	432,75	35,54	26,03
15:00	30,69	315,75	34,48	26,02
16:00	30,34	173,00	32,42	26,01
17:00	29,54	66,50	30,34	26,01
18:00	28,27	49,50	28,87	26,00
19:00	26,78	10,00	26,90	26,00
20:00	25,28	0,00	25,28	25,99
21:00	24,02	0,00	24,02	25,99
22:00	22,87	0,00	22,87	25,99
23:00	21,95	0,00	21,95	26,00

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: Inveruno_CV03b

Note:

Tipologia:	<u>Parete</u>	Disposizione:	<u>Verticale</u>
Verso:	<u>Esterno</u>	Spessore:	<u>576,0</u> mm
Trasmittanza U:	0,158 W/(m ² K)	Resistenza R:	6,337 (m ² K)/W
Massa superf.:	869 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore	Conduttività	Resistenza	Densità	Capacità term.	Fattore	Fattore
	Strato	s	λ	R	ρ	С	μа	μu
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-		-	-
Α	Piastrelle	10,0	1,000	0,010	2.300	0,84	213,2	999.99 9,0
В	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7	8,7
С	Polietilene (PE)	1,0	0,350	0,003	950	2,30	54.054	54.054
	Tolletierie (T.E.)	1,0	0,000	0,000		2,30	,1	,1
D	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7	8,7
Е	Lana di roccia - 40kg/mc	50,0	0,035	1,429	40	1,03	1,0	1,0
F	Calcestruzzo armato (getto)	250,0	1,910	0,131	2.400	1,00	0,0	999.99 9,0
G	IVR_Isolante	120,0	0,028	4,286	35	1,40	56,0	56,0
Н	Mattone semipieno 120 x 250 foratura 21% (giunti malta 12 mm)	120,0	0,632	0,190	1.800	1,00	10,0	5,0
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-			_
	TOTALE	576,0		6,337				

Conduttanza unitaria superficiale interna: 7,690 W/(m²K)

Resistenza unitaria superficiale interna: 0,130 (m²K)/W

Conduttanza unitaria superficiale esterna: 25,000 W/(m²K)

Resistenza unitaria superficiale esterna: 0,040 (m²K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	<u>Inveruno</u>	Zona climatica:	<u>E</u>
Trasmittanza della struttura U:	0,158 W/(m ² K)	Trasmittanza limite Ulim:	0,260 W/(m ² K)

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	Inveruno	Tipo di calcolo:	Classi di concentrazione
Verso:	<u>Esterno</u>	Coeff. di correzione btr,x:	
Classe di adificia	Edifici con indice di affollamento non	Volume interno V:	3
Classe di edificio:	noto	volume interno v:	- m ³
Produz. nota di vapore G:	- kg/h		

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	-	-0,1	84,9	0,5
febbraio	20,0	-	3,4	74,0	0,5
marzo	20,0	-	7,0	63,4	0,5
aprile	20,0	-	10,3	66,4	0,5
maggio	20,0	-	16,2	72,9	0,5
giugno	20,0	-	20,3	70,5	0,5
luglio	20,0	-	21,0	64,3	0,5
agosto	20,0	-	20,9	66,1	0,5
settembre	20,0	-	17,0	71,8	0,5
ottobre	20,0	-	11,4	90,7	0,5
novembre	20,0	-	5,9	94,7	0,5
dicembre	20,0	-	1,3	85,6	0,5

CONDIZIONE	Temperatura interna θi	Pressione parziale interna pi	Temperatura esterna θe	Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	-0,10	514,20
ESTIVA	20,00	1.615,60	21,00	1.597,60

Х	La struttura non è soggetta a fenomeni di condensa interstiziale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 571,055 Pa.
	La struttura è soggetta a fenomeni di condensa.
	La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).
X	La struttura non è soggetta a fenomeni di condensa superficiale.
	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 571,055 Pa.

VERIFICA FORMAZIONE MUFFE SUPERFICIALI

CONDIZIONI AL CONTORNO INTERNE ED ESTERNE

	Temperatura esterna Te	Pressione esterna Pe	Variazione di pressione ΔP	Pressione interna Pi	Temperatura interna Ti	Umidità relativa interna φi
Mese	°C	Pa	Pa	Pa	°C	%
ottobre	11,4	1221,38	405,3	1626,68	20	91
novembre	5,9	878,74	600,55	1479,29	20	95
dicembre	1,3	574,43	763,85	1338,28	20	86
gennaio	-0,1	514,17	810	1324,17	20	85
febbraio	3,4	576,19	689,3	1265,49	20	74
marzo	7,0	634,73	561,5	1196,23	20	63
aprile	10,3	831,79	444,35	1276,14	20	66

CALCOLO DEL FATTORE DI RISCHIO

La verifica della formazione di muffa è eseguita in maniera conforme a quanto riportato nella norma UNI EN ISO 13788

	Temperatura superficiale critica Tsi-critica	Fattore di rischio ammissibile frsi- amm
Mese	°C	-

ottobre	17,77	0,7408
novembre	16,27	0,7356
dicembre	14,71	0,7171
gennaio	14,55	0,7287
febbraio	13,85	0,6293
marzo	12,98	0,4602
aprile	13,98	0,3789

Riepilogo dei risultati:

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione

Fattore di resistenza superficiale fRsi: 0,7408 (mese di Ottobre)

Fattore di resistenza superficiale ammissibile massimo fRsiAmm: 0,9795

ESITO VERIFICA DI MUFFA: OK

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.324,2	1.265,5	1.196,2	1.276,1	1.577,5	1.766,8	1.662,1	1.700,1	1.596,5	1.626,7	1.479,3	1.338,3
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.297,3	1.242,7	1.177,6	1.261,4	1.569,7	1.763,8	1.660,0	1.697,9	1.589,6	1.613,3	1.459,4	1.313,0
	2.273,5	2.284,4	2.295,7	2.306,1	2.324,8	2.337,9	2.340,1	2.339,8	2.327,4	2.309,6	2.292,3	2.277,8
A-B	1.296,0	1.241,5	1.176,7	1.260,7	1.569,3	1.763,7	1.659,9	1.697,7	1.589,3	1.612,6	1.458,4	1.311,7
	2.246,9	2.262,4	2.278,4	2.293,1	2.319,7	2.338,3	2.341,5	2.341,1	2.323,3	2.298,1	2.273,5	2.253,1
B-C	615,8	662,7	705,2	887,6	1.372,0	1.688,7	1.605,7	1.640,6	1.415,9	1.272,2	954,1	670,3
	2.245,7	2.261,3	2.277,6	2.292,5	2.319,5	2.338,3	2.341,6	2.341,1	2.323,1	2.297,5	2.272,6	2.251,9
C-D	614,5	661,5	704,2	886,8	1.371,7	1.688,5	1.605,6	1.640,5	1.415,5	1.271,6	953,1	669,0
	2.219,4	2.239,5	2.260,3	2.279,6	2.314,3	2.338,7	2.342,9	2.342,3	2.319,1	2.286,0	2.254,0	2.227,4
D-E	613,8	661,0	703,8	886,5	1.371,5	1.688,4	1.605,5	1.640,4	1.415,4	1.271,2	952,6	668,4
	1.665,1	1.768,2	1.880,0	1.987,8	2.194,3	2.348,6	2.375,8	2.371,9	2.223,7	2.025,0	1.845,2	1.705,7
E-F	613,8	661,0	703,8	886,5	1.371,5	1.688,4	1.605,5	1.640,4	1.415,4	1.271,2	952,6	668,4
	1.621,0	1.729,7	1.848,1	1.962,8	2.183,6	2.349,5	2.378,9	2.374,6	2.215,1	2.002,4	1.811,2	1.663,7
F-G	529,3	589,0	645,2	840,1	1.346,9	1.679,1	1.598,8	1.633,3	1.393,8	1.228,9	889,9	588,7
	639,0	813,0	1.034,2	1.282,0	1.856,9	2.379,1	2.480,0	2.465,4	1.950,1	1.375,4	961,6	704,2
G-H	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	611,7	784,9	1.007,0	1.257,3	1.843,4	2.380,4	2.484,6	2.469,5	1.939,0	1.352,2	933,9	676,5
H-Add	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	605,5	779,2	1.001,3	1.252,2	1.840,6	2.380,7	2.485,6	2.470,4	1.936,6	1.347,3	928,2	670,7

TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	19,6	19,7	19,7	19,8	19,9	20,0	20,0	20,0	19,9	19,8	19,7	19,6
A-B	19,6	19,6	19,7	19,8	19,9	20,0	20,0	20,0	19,9	19,8	19,7	19,6
B-C	19,4	19,5	19,6	19,7	19,9	20,0	20,0	20,0	19,9	19,7	19,6	19,4
C-D	19,4	19,5	19,6	19,7	19,9	20,0	20,0	20,0	19,9	19,7	19,5	19,4
D-E	19,2	19,3	19,5	19,6	19,8	20,0	20,0	20,0	19,9	19,6	19,4	19,2
E-F	14,6	15,6	16,5	17,4	19,0	20,1	20,3	20,2	19,2	17,7	16,2	15,0
F-G	14,2	15,2	16,3	17,2	18,9	20,1	20,3	20,3	19,1	17,5	15,9	14,6
G-H	0,6	4,0	7,5	10,7	16,3	20,3	21,0	20,9	17,1	11,7	6,4	2,0
H-Add	0,0	3,5	7,1	10,4	16,2	20,3	21,0	20,9	17,0	11,5	6,0	1,4
Add-Esterno	-0,1	3,4	7,0	10,3	16,2	20,3	21,0	20,9	17,0	11,4	5,9	1,3

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. E/F												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]												

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente Gc: 0,0000 (mese di -) kg/m^2 nell'interfaccia -

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia $Gc,max: 0,5000 \text{ kg/m}^2$ Quantità di vapore residuo $Ma: 0,0000 \text{ (mese di -) kg/m}^2 \text{ nell'interfaccia -}$

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA Fl^{2,500} p2.500 p2.500 20_F 2,000 12,000 2,000 1.500 1500 1.500 1,000 1,000 Febbraio Gennaio Marzo арі le т*а*доја giugna 2.500 2,000 1,500 H1.500 H1.000 1.000 El₅₀₀ E]500 Aprile Maggio Giugno settemble lugia agasto 2.500 2000 1.500 1,000 E|500 Luglio Agosto Settembre attable navem Die doemble 2,000 2,000 2,000 1.500 1500 1500 H1.000 H1.000 1,000 Dicembre Ottobre Novembre LEGENDA Temperatura [°C] Pressione del vapore [Pa] Press. di saturazione [Pa]

VERIFICA DI MASSA E INERZIA TERMICA

Il comportamento termico dinamico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13786.

Verifica di massa:

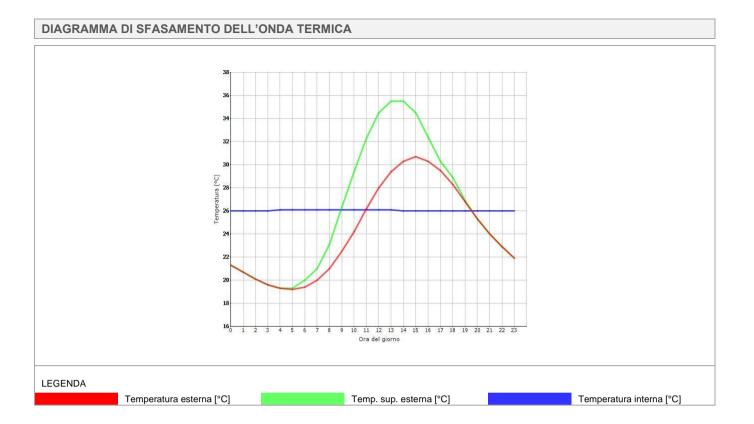
Massa della struttura per metro quadrato di superficie: 869 kg/m²

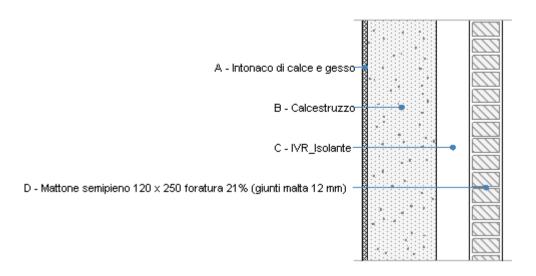
Valore minimo di massa superficiale: 230 kg/m 2

ESITO VERIFICA DI MASSA: OK

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

CONDIZIONI AL CONTORNO


Comune:	Inveruno	Colorazione:	<u>Chiaro</u>
Orientamento:	<u>s</u>	Mese massima insolazione:	luglio
Temp. media mese massima insolaz.:	24,3 °C	Temperatura massima estiva:	30,7 °C
Escursione giorno più caldo dell'anno:	11,5 °C	Irradian. mensile massima piano orizz.:	275,46 W/m ²


INERZIA TERMICA

Tempo sfasamento dell'onda termica:	18h 07'	Fattore di attenuazione:	0,0067
Capacità termica interna C1:	41,2 kJ/(m ² /K)	Capacità termica esterna C2:	108,9 kJ/(m ² /K)
Ammettenza interna oraria:	15,6 W/(m ² /K)	Ammettenza interna in modulo:	3,0 W/(m ² /K)
Ammettenza esterna oraria:	14,5 W/(m ² /K)	Ammettenza esterna in modulo:	7,9 W/(m ² /K)
Trasmittanza termica periodica Y:	0,001 W/(m ² K)	Classificazione struttura da normativa:	
Trasmitt. termica periodica limite Ylim:	0,100 W/(m ² K)		

ESITO VERIFICA DI INERZIA: OK

	Temperatura esterna nel giorno più caldo Te	Irradiazione solare nel giorno più caldo dell'anno le	Temp. superficiale esterna nel giorno più caldo Te,sup	Temperatura interna nel giorno più caldo Ti
Ora	°C	W/m²	°C	°C
0:00	21,26	0,00	21,26	26,01
1:00	20,68	0,00	20,68	26,01
2:00	20,11	0,00	20,11	26,03
3:00	19,65	0,00	19,65	26,05
4:00	19,30	0,00	19,30	26,07
5:00	19,19	10,00	19,31	26,09
6:00	19,42	49,00	20,01	26,10
7:00	19,99	85,75	21,02	26,11
8:00	21,03	173,00	23,10	26,11
9:00	22,52	315,75	26,31	26,10
10:00	24,25	432,75	29,44	26,09
11:00	26,20	508,25	32,30	26,08
12:00	28,04	534,25	34,45	26,07
13:00	29,42	508,25	35,52	26,05
14:00	30,34	432,75	35,54	26,04
15:00	30,69	315,75	34,48	26,03
16:00	30,34	173,00	32,42	26,03
17:00	29,54	66,50	30,34	26,02
18:00	28,27	49,50	28,87	26,02
19:00	26,78	10,00	26,90	26,01
20:00	25,28	0,00	25,28	26,01
21:00	24,02	0,00	24,02	26,00
22:00	22,87	0,00	22,87	26,00
23:00	21,95	0,00	21,95	26,00

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: Inveruno_CV03c

Note:

Tipologia:	<u>Parete</u>	Disposizione:	<u>Verticale</u>
Verso:	<u>Esterno</u>	Spessore:	<u>505,0</u> mm
Trasmittanza U:	0,184 W/(m ² K)	Resistenza R:	5,425 (m ² K)/W
Massa superf.:	520 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore	Conduttività	Resistenza	Densità	Capacità term.	Fattore	Fattore
		s [mm]	λ [W/(mK)]	<i>R</i> [(m ² K)/W]	ρ [Kg/m ³]	C [kJ/(kgK)]	μa [-]	μ <i>u</i> [-]
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-	-
Α	Intonaco di calce e gesso	15,0	0,700	0,021	1.400	0,84	11,1	11,1
В	Calcestruzzo	250,0	0,330	0,758	1.200	1,00	3,3	3,3
С	IVR_Isolante	120,0	0,028	4,286	35	1,40	56,0	56,0
D	Mattone semipieno 120 x 250 foratura 21% (giunti malta 12 mm)	120,0	0,632	0,190	1.800	1,00	10,0	5,0
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-	-	-	-
	TOTALE	505,0		5,425				

Conduttanza unitaria superficiale interna: 7,690 W/(m ² K)	Resistenza unitaria superficiale interna: 0,130 (m ² K)/W
Conduttanza unitaria superficiale esterna: 25,000 W/(m ² K)	Resistenza unitaria superficiale esterna: 0,040 (m ² K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	<u>Inveruno</u>	Zona climatica:	<u>E</u>
Trasmittanza della struttura U:	0,184 W/(m ² K)	Trasmittanza limite Ulim:	0,260 W/(m ² K)

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

ESITO VERIFICA DI TRASMITTANZA: -

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	Inveruno	Tipo di calcolo:	Classi di concentrazione
Verso:	<u>Esterno</u>	Coeff. di correzione btr,x:	
Classe di edificio:	Edifici con indice di affollamento non	Volume interno V:	- m ³
Classe di edilicio.	noto	volume interno v.	- 1110
Produz. nota di vapore G:	- kg/h		

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	-	-0,1	84,9	0,5
febbraio	20,0	-	3,4	74,0	0,5
marzo	20,0	-	7,0	63,4	0,5
aprile	20,0	-	10,3	66,4	0,5
maggio	20,0	-	16,2	72,9	0,5
giugno	20,0	-	20,3	70,5	0,5
luglio	20,0	-	21,0	64,3	0,5
agosto	20,0	-	20,9	66,1	0,5
settembre	20,0	-	17,0	71,8	0,5
ottobre	20,0	-	11,4	90,7	0,5
novembre	20,0	-	5,9	94,7	0,5
dicembre	20,0	-	1,3	85,6	0,5

CONDIZIONE	Temperatura interna θi	Pressione parziale interna pi	Temperatura esterna θe	Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	-0,10	514,20
ESTIVA	20,00	1.615,60	21,00	1.597,60

X	La struttura non è soggetta a fenomeni di condensa interstiziale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 571,205 Pa.
	La struttura è soggetta a fenomeni di condensa.
	La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).
×	La struttura non è soggetta a fenomeni di condensa superficiale.
^	La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 571,205 Pa.

VERIFICA FORMAZIONE MUFFE SUPERFICIALI

CONDIZIONI AL CONTORNO INTERNE ED ESTERNE

Mese	Temperatura esterna Te °C	Pressione esterna Pe Pa	Variazione di pressione ΔP Pa	Pressione interna Pi Pa	Temperatura interna Ti °C	Umidità relativa interna φi %
ottobre	11,4	1221,38	405,3	1626,68	20	91
novembre	5,9	878,74	600,55	1479,29	20	95
dicembre	1,3	574,43	763,85	1338,28	20	86
gennaio	-0,1	514,17	810	1324,17	20	85
febbraio	3,4	576,19	689,3	1265,49	20	74
marzo	7,0	634,73	561,5	1196,23	20	63
aprile	10,3	831,79	444,35	1276,14	20	66

CALCOLO DEL FATTORE DI RISCHIO

La verifica della formazione di muffa è eseguita in maniera conforme a quanto riportato nella norma UNI EN ISO 13788

	Temperatura superficiale critica Tsi-critica	Fattore di rischio ammissibile frsi- amm
Mese	°C	-

ottobre	17,77	0,7408
novembre	16,27	0,7356
dicembre	14,71	0,7171
gennaio	14,55	0,7287
febbraio	13,85	0,6293
marzo	12,98	0,4602
aprile	13,98	0,3789

Riepilogo dei risultati:

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione

Fattore di resistenza superficiale fRsi: 0,7408 (mese di Ottobre)

Fattore di resistenza superficiale ammissibile massimo fRsiAmm: 0,9760

ESITO VERIFICA DI MUFFA: OK

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.324,2	1.265,5	1.196,2	1.276,1	1.577,5	1.766,8	1.662,1	1.700,1	1.596,5	1.626,7	1.479,3	1.338,3
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.309,0	1.252,6	1.185,7	1.267,8	1.573,1	1.765,1	1.660,9	1.698,8	1.592,6	1.619,1	1.468,1	1.324,0
	2.257,0	2.270,7	2.285,0	2.298,1	2.321,6	2.338,2	2.341,0	2.340,6	2.324,9	2.302,4	2.280,6	2.262,5
A-B	1.233,4	1.188,3	1.133,3	1.226,4	1.551,2	1.756,8	1.654,9	1.692,5	1.573,3	1.581,3	1.412,0	1.252,7
	1.891,9	1.963,6	2.039,8	2.111,9	2.246,4	2.344,2	2.361,3	2.358,9	2.265,2	2.136,4	2.016,2	1.920,3
B-C	623,2	668,9	710,3	891,6	1.374,2	1.689,5	1.606,3	1.641,2	1.417,7	1.275,9	959,5	677,2
	644,7	818,8	1.039,9	1.287,0	1.859,6	2.378,8	2.479,1	2.464,6	1.952,3	1.380,2	967,3	710,0
C-D	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	612,6	785,9	1.007,9	1.258,2	1.843,9	2.380,4	2.484,5	2.469,3	1.939,4	1.353,0	934,9	677,4
D-Add	514,2	576,2	634,7	831,8	1.342,6	1.677,4	1.597,6	1.632,1	1.390,0	1.221,4	878,7	574,4
	605,5	779,2	1.001,3	1.252,2	1.840,6	2.380,7	2.485,6	2.470,4	1.936,6	1.347,3	928,2	670,7

TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	19,5	19,6	19,7	19,8	19,9	20,0	20,0	20,0	19,9	19,8	19,7	19,6
A-B	19,4	19,5	19,6	19,7	19,9	20,0	20,0	20,0	19,9	19,8	19,6	19,5
B-C	16,6	17,2	17,8	18,4	19,4	20,1	20,2	20,2	19,5	18,6	17,6	16,9
C-D	0,8	4,1	7,6	10,7	16,4	20,3	21,0	20,9	17,1	11,8	6,5	2,1
D-Add	0,0	3,5	7,1	10,4	16,2	20,3	21,0	20,9	17,0	11,5	6,0	1,4
Add-Esterno	-0,1	3,4	7,0	10,3	16,2	20,3	21,0	20,9	17,0	11,4	5,9	1,3

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0.0000	0.0000	0.0000	0,0000	0.0000	0.0000	0,0000	0,0000	0.000

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente Gc: 0,0000 (mese di -) kg/m^2 nell'interfaccia -

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia $G_{c,max}$: 0,5000 kg/m 2

Quantità di vapore residuo Ma: 0,0000 (mese di -) kg/m² nell'interfaccia -

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA Fl^{2,500} p2.500 p2.500 20_F 2,000 2,000 2,000 5 1.500 1.500 1.500 1,000 1,000 Febbraio Marzo Gennaio арі le т*а*доја giugna 2.500 2,000 5 1,500 H1.500 H1.000 1,000 El₅₀₀ E]500 Aprile Maggio Giugno lugia settemble agasto 2.500 2000 1.500 1,000 E|₅₀₀ Luglio Agosto Settembre dæmbe attable navem Die 2,000 2,000 5 1.500 1500 1500 H1.000 H1.000 1,000 Ottobre Novembre Dicembre LEGENDA Temperatura [°C] Pressione del vapore [Pa] Press. di saturazione [Pa]

VERIFICA DI MASSA E INERZIA TERMICA

Il comportamento termico dinamico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13786.

Verifica di massa:

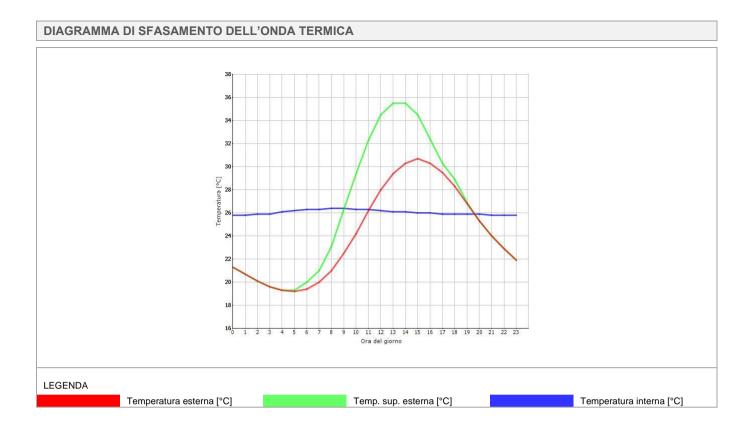
Massa della struttura per metro quadrato di superficie: 520 kg/m²

Valore minimo di massa superficiale: 230 kg/m 2

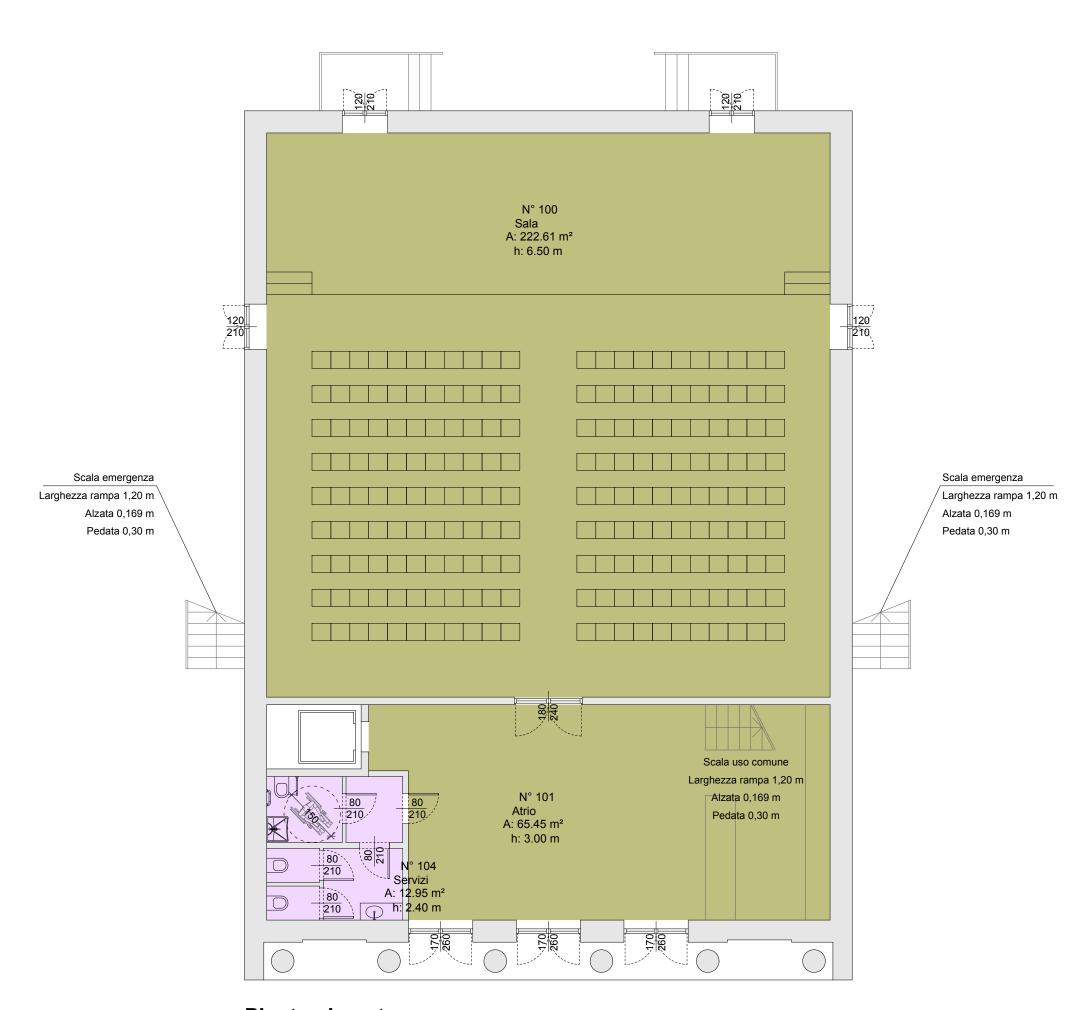
ESITO VERIFICA DI MASSA: OK

Riferimento normativo: Limiti relativi alla Normativa Nazionale Legge 90

CONDIZIONI AL CONTORNO


Comune:	Inveruno	Colorazione:	<u>Chiaro</u>
Orientamento:	<u>s</u>	Mese massima insolazione:	luglio
Temp. media mese massima insolaz.:	24,3 °C	Temperatura massima estiva:	30,7 °C
Escursione giorno più caldo dell'anno:	11,5 °C	Irradian. mensile massima piano orizz.:	275,46 W/m ²

INERZIA TERMICA


Tempo sfasamento dell'onda termica:	19h 11'	Fattore di attenuazione:	0,0359
Capacità termica interna C1:	49,9 kJ/(m ² /K)	Capacità termica esterna C2:	108,9 kJ/(m ² /K)
Ammettenza interna oraria:	13,9 W/(m ² /K)	Ammettenza interna in modulo:	3,6 W/(m ² /K)
Ammettenza esterna oraria:	14,5 W/(m ² /K)	Ammettenza esterna in modulo:	7,9 W/(m ² /K)
Trasmittanza termica periodica Y:	0,007 W/(m ² K)	Classificazione struttura da normativa:	
Trasmitt. termica periodica limite Ylim:	0,100 W/(m ² K)		

ESITO VERIFICA DI INERZIA: OK

Ora	Temperatura esterna nel giorno più caldo Te °C	Irradiazione solare nel giorno più caldo dell'anno le W/m²	Temp. superficiale esterna nel giorno più caldo Te,sup °C	Temperatura interna nel giorno più caldo Ti °C
0:00	21,26	0,00	21,26	25,81
1:00	20,68	0,00	20,68	25,83
2:00	20,11	0,00	20,11	25,87
3:00	19,65	0,00	19,65	25,94
4:00	19,30	0,00	19,30	26,06
5:00	19,19	10,00	19,31	26,17
6:00	19,42	49,00	20,01	26,27
7:00	19,99	85,75	21,02	26,35
8:00	21,03	173,00	23,10	26,39
9:00	22,52	315,75	26,31	26,39
10:00	24,25	432,75	29,44	26,35
11:00	26,20	508,25	32,30	26,28
12:00	28,04	534,25	34,45	26,20
13:00	29,42	508,25	35,52	26,15
14:00	30,34	432,75	35,54	26,08
15:00	30,69	315,75	34,48	26,02
16:00	30,34	173,00	32,42	25,97
17:00	29,54	66,50	30,34	25,93
18:00	28,27	49,50	28,87	25,90
19:00	26,78	10,00	26,90	25,88
20:00	25,28	0,00	25,28	25,86
21:00	24,02	0,00	24,02	25,83
22:00	22,87	0,00	22,87	25,82
23:00	21,95	0,00	21,95	25,81

LOCALE	Sup.		Sup. richiesta	Sup. Utile Aerante	R.A. (S.U.F./S.L.)	Sup. Utile Illuminante	R.I. (S.U.F./S.L.)
	Locale		1/8				
PIANO TERRA							
Sala (100)	222,61	mq	-	-	Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	-	Integrazione con illuminazione dinamica e dimerabile come da norma UNI 12464 (vedi relazione tecnica)
Atrio (101)	65,45	mq	65,45/8 = 8,18 mq	(1,70 m x 2,60 m) x 3 = 13,26 mq	13,26 > 8,18 Verificato	1,70 m x (2,60 m - 0,60 m) x 3 = 10,20 mq	10,20 > 8,18 Verificato
Servizi igienici (104)	12,95	mq	-	-	Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	-	Integrazione con illuminazione dinamica e dimerabile come da norma UNI 12464 (vedi relazione tecnica)
PIANO PRIMO							
Ballatoio (102)	99,43	mq	-	-	Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	-	Integrazione con illuminazione dinamica e dimerabile come da norma UNI 12464 (vedi relazione tecnica)
Atrio (103)	65,45	mq	65,45/8 = 8,18 mq	(1,70 m x 1,50 m) x 3 = 7,65 mq	7,65 < 8,18 Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	1,70 m x (2,60 m - 0,60 m) x 3 = 10,20 mq	10,20 > 8,18 Verificato
Gervizi igienici 033, 044)	12,95	mq	-	-	Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	-	Integrazione con illuminazione dinamica e dimerabile come da norma UNI 12464 (ved relazione tecnica)

Pianta piano terra

Locali D.M. 18.12.1975

D.M. 1.1 Attività didattiche_Normali

D.M. 1.2 Attività didattiche_Speciali

D.M. 1.3 Attività didattiche_Laboratori

D.M. 2.1 Attività collettive_Integrative e parascolastiche

D.M. 2.2 Attività collettive_Biblioteca

D.M. 2.3 Attività collettive_Mensa e relativi servizi

D.M. 3.1 Attività complementari_Atrio

D.M. 3.2 Attività complementari_Uffici

D.M. 3.3 Attività complementari_Connettivo e servizi igienici

D.M. 4 Spazi per l'educazione fisica_Palestra, servizi Palestra

D.M. 5 Altro

COMUNE DI INVERUNO

NUOVO PLESSO SCOLASTICO - VIA IV NOVEMBRE

PROGETTO DEFINITIVO

PROGETTISTA: UFFICIO TECNICO COMUNE DI INVERUNO

R.U.P.: Geom. Pietro Tiberti Progettista: Arch. Claudia Soldati

> CONSULENTE SCIENTIFICO: Politecnico di Milano - Dipartimento ABC

Data: 07.01.2020

Aggiornamento

Titolo progetto di ricerca:

tecnologica-energetica con l'applicazione della metodologia BIM Individuazione di un nuovo modello di scuola innovativa ad alta efficienza

RESPONSABILE SCIENTIFICO:

Prof. Tomaso Monestiroli

GRUPPO DI LAVORO:

Prof. Maurizio Acito Prof. Giuseppe Martino Di Giuda

Prof. Paolo Oliaro

Arch. Francesco Menegatti

Arch. Luca Cardani Arch. Alberto Cariboni

Ing. Vito Lavermicocca

Ing. Mariagrazia Calia Ing. Agata Consoli

BIMGroup: Ing. Marco Schievano, Ing. Francesco Paleari, Ing. Paolo

Ettore Giana, Ing. Elena Seghezzi, Ing. Giulia Pattini

CONSULENTE SCIENTIFICO:

Università degli studi di Milano Bicocca Dipartimento di Scienze Umane per la Formazione "Riccardo Massa"

RESPONSABILE SCIENTIFICO:

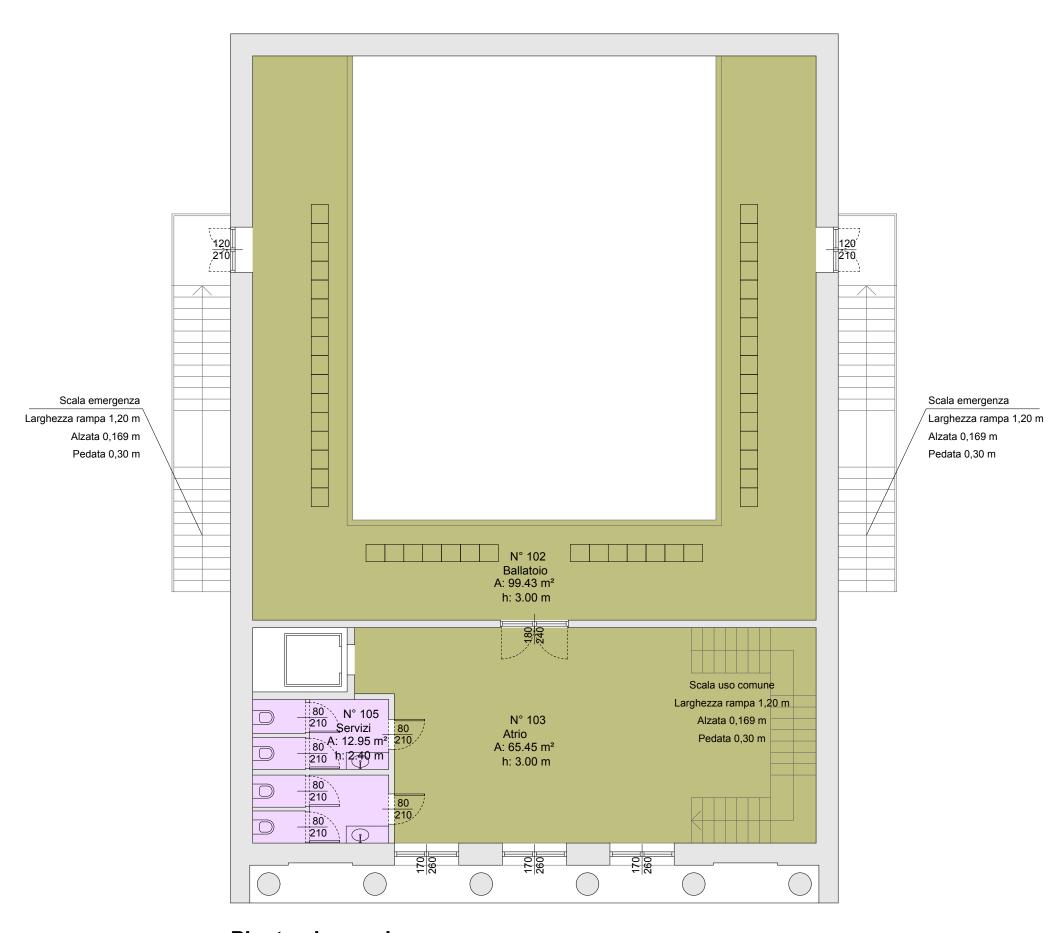
Prof.ssa Elisabetta Nigris

GRUPPO DI LAVORO: Prof.ssa Barbara Balconi

Prof.ssa Luisa Zecca Prof.ssa Ambra Cardani

Azienda tutela della Salute (ATS)

Edificio C - Pianta piano terra


Tavola n°:

Scala:

ATS

07

LOCALE	Sup. Locale		Sup. richiesta 1/8	Sup. Utile Aerante	R.A. (S.U.F./S.L.)	Sup. Utile Illuminante	R.I. (S.U.F./S.L.)
PIANO TERRA							
Sala (100)	222,61	mq	-	-	Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	-	Integrazione con illuminazione dinamica e dimerabile come da norma UNI 12464 (vedi relazione tecnica)
Atrio (101)	65,45	mq	65,45/8 = 8,18 mq	(1,70 m x 2,60 m) x 3 = 13,26 mq	13,26 > 8,18 Verificato	1,70 m x (2,60 m - 0,60 m) x 3 = 10,20 mq	10,20 > 8,18 Verificato
Servizi igienici (104)	12,95	mq	-	-	Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	-	Integrazione con illuminazione dinamica e dimerabile come da norma UNI 12464 (vedi relazione tecnica)
PIANO PRIMO							
Ballatoio (102)	99,43	mq	-	-	Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	-	Integrazione con illuminazione dinamica e dimerabile come da norma UNI 12464 (vedi relazione tecnica)
Atrio (103)	65,45	mq	65,45/8 = 8,18 mq	(1,70 m x 1,50 m) x 3 = 7,65 mq	7,65 < 8,18 Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	1,70 m x (2,60 m - 0,60 m) x 3 = 10,20 mq	10,20 > 8,18 Verificato
Servizi igienici (033, 044)	12,95	mq	-	-	Integrazione con ventilazione meccanica secondo norma UNI 10339 (vedi relazione tecnica)	-	Integrazione con illuminazione dinamica e dimerabile come da norma UNI 12464 (ved relazione tecnica)

Pianta piano primo

Locali D.M. 18.12.1975

D.M. 1.1 Attività didattiche_Normali

D.M. 1.2 Attività didattiche_Speciali

D.M. 1.3 Attività didattiche_Laboratori

D.M. 2.1 Attività collettive_Integrative e parascolastiche

D.M. 2.2 Attività collettive_Biblioteca

D.M. 2.3 Attività collettive_Mensa e relativi servizi

D.M. 3.1 Attività complementari_Atrio

D.M. 3.2 Attività complementari_Uffici

D.M. 3.3 Attività complementari_Connettivo e servizi igienici

D.M. 4 Spazi per l'educazione fisica_Palestra, servizi Palestra

D.M. 5 Altro

COMUNE DI INVERUNO

NUOVO PLESSO SCOLASTICO - VIA IV NOVEMBRE

PROGETTO DEFINITIVO

PROGETTISTA: UFFICIO TECNICO COMUNE DI INVERUNO

R.U.P.: Geom. Pietro Tiberti Progettista: Arch. Claudia Soldati

> CONSULENTE SCIENTIFICO: Politecnico di Milano - Dipartimento ABC

Data: 07.01.2020

Aggiornamento

Titolo progetto di ricerca:

tecnologica-energetica con l'applicazione della metodologia BIM Individuazione di un nuovo modello di scuola innovativa ad alta efficienza

RESPONSABILE SCIENTIFICO: Prof. Tomaso Monestiroli

GRUPPO DI LAVORO:

Prof. Maurizio Acito Prof. Giuseppe Martino Di Giuda

Prof. Paolo Oliaro

Arch. Francesco Menegatti

Arch. Luca Cardani Arch. Alberto Cariboni

Ing. Vito Lavermicocca

Ing. Mariagrazia Calia Ing. Agata Consoli

BIMGroup: Ing. Marco Schievano, Ing. Francesco Paleari, Ing. Paolo

Ettore Giana, Ing. Elena Seghezzi, Ing. Giulia Pattini

CONSULENTE SCIENTIFICO: Università degli studi di Milano Bicocca

Dipartimento di Scienze Umane per la Formazione "Riccardo Massa"

RESPONSABILE SCIENTIFICO:

Prof.ssa Elisabetta Nigris

GRUPPO DI LAVORO: Prof.ssa Barbara Balconi

Prof.ssa Luisa Zecca Prof.ssa Ambra Cardani

Azienda tutela della Salute (ATS)

Edificio C - Pianta piano primo

Scala:

Tavola n°: **ATS**

80