COMUNE DI INVERUNO

NUOVO PLESSO SCOLASTICO - VIA IV NOVEMBRE

PROGETTO DEFINITIVO

UFFICIO TECNICO COMUNE DI INVERUNO

R.U.P.: Geom. Pietro Tiberti Progettista: Arch. Claudia Soldati

CONSULENTE SCIENTIFICO:

Politecnico di Milano – Dipartimento ABC

Titolo progetto di ricerca:

Individuazione di un nuovo modello di scuola innovativa ad alta efficienza

tecnologica-energetica con l'applicazione della metodologia BIM

RESPONSABILE SCIENTIFICO:

prof. Tomaso Monestiroli

GRUPPO DI LAVORO:

Prof. Maurizio Acito

Prof. Giuseppe Martino Di Giuda

Prof. Paolo Oliaro

Prof. Franco Guzzetti

Arch. Francesco Menegatti

Arch. Luca Cardani

Arch. Alberto Cariboni

Ing. Vito Lavermicocca

Ing. Mariagrazia Calia

Ing. Agata Consoli

BIMGroup: Ing. Marco Schievano, Ing. Francesco Paleari, Ing. Elena Seghezzi

CONSULENTE SCIENTIFICO:

Università degli studi di Milano Bicocca

Dipartimento di Scienze Umane per la Formazione "Riccardo Massa"

RESPONSABILE SCIENTIFICO:

Prof.ssa Elisabetta Nigris

GRUPPO DI LAVORO:

Prof.ssa Barbara Balconi

Prof.ssa Luisa Zecca

Prof.ssa Ambra Cardani

Oggetto:

Progetto impianti meccanici – Relazione di calcolo

Tavola n°:

IM – RC01

RELAZIONE DI CALCOLO IMPIANTI MECCANICI

INDICE GENERALE

1.	Premessa	2
2. 2.1. 2.2.	Fabbisogni termici e frigoriferi Condizioni di progetto Fabbisogni termici e frigoriferi	3
3. 3.1. 3.1.	Impianto di climatizzazione Dimensionamento dei terminali di emissione Dimensionamento delle pompe di circolazione	4
4. 4.1. 4.2.	Impianto di ventilazione meccanica Dimensionamento della rete di distribuzione Estrazione dai servizi	8
5.	Dimensionamento dei generatori termofrigoriferi	9
6. 1. 6.2. 6.3. 6.4.	Impianto idrico sanitario Dimensionamento pompe di calore per l'acqua calda sanitaria Acqua fredda sanitaria Acqua calda sanitaria Scarichi acque reflue nere	11 13
Allega	to 1 – Stratigrafie	15
Allega	to 2 – Dimensionamento pompe di circolazione	31

1. Premessa

Nel presente documento si riportano i criteri e i risultati dei calcoli di dimensionamento degli impianti meccanici a servizio del complesso scolastico di Inveruno, composto da una scuola secondaria di primo grado (Edificio A), una scuola primaria (Edificio B) ed un auditorium (Edificio C).

Le parti che costituiscono gli impianti meccanici per le quali di seguito si riportano le specifiche tecniche sono:

- il sistema di climatizzazione invernale ed estiva;
- il sistema di ventilazione ed estrazione forzata;
- il sistema idrico sanitario;
- il sistema integrato di Building Automation (BMS)
- il sistema antincendio.

2. Fabbisogni termici e frigoriferi

2.1. Condizioni di progetto

I fabbisogni termici e frigoriferi dell'edificio sono stati calcolati considerando le seguenti condizioni di progetto:

Inverno:

Condizioni esterne: temperatura -5°C (UNI 5364)— umidità relativa 76%. Condizioni interne: temperatura 20±1°C - umidità relativa 50±5%.

Estate

Condizioni esterne: temperatura 32°C - umidità relativa 50% (UNI 10339).

Condizioni interne: temperatura 26±1°C - umidità relativa 50±5%.

Portata di aria esterna per ventilazione:

- 18 m³/h a studente nelle aule della scuola primaria (UNI 10339)
- 21,6 m³/h a studente nelle aule della scuola media (UNI 10339)
- 25,2 m³/h a studente nei laboratori (UNI 10339)
- 21,6 m³/h a persona negli uffici (UNI 10339)
- 36 m³/h a persona nelle mense (UNI 10339)
- 8 vol/h per i servizi igienici (UNI 10339)

Caratteristiche dell'involucro edilizio:

Si riportano in allegato i dettagli dell'involucro edilizio considerati con le caratteristiche di tramittanza dei diversi componenti.

2.2. Fabbisogni termici e frigoriferi

Il fabbisogno termici e frigoriferi, escluso il trattamento dell'aria, calcolato è pari a 114,82 kW per l'inverno e 97,59 kW per l'estate. Di seguito si riporta una tabella riepilogativa.

	Fabbisogno	Fabbisogno
	termico	frigorifero
Edificio A	68'210	37'693
Scuola	32'280	30'782
Palestra	31'910	6'911
Edificio B	39'880	58'942
Scuola	33'410	55'016
Palestra	6'470	3'925
Auditorium	6'730	4'044
Totale	114'820	100'634

Il fabbisogno frigorifero, escluso il trattamento dell'aria, è pari a 100'634 W. Di seguito si riporta una tabella riepilogativa.

3. Impianto di climatizzazione

3.1. Dimensionamento dei terminali di emissione

La tipologia dei terminali di emissione è la seguente:

- pannelli radianti a soffitto nelle aule, nei laboratori, nei corridoi e negli spazi comuni;
- pannelli radianti a pavimento nelle palestre;
- ventilconvettori nei refettori.

Il loro dimensionamento garantisce il soddisfacimento dei fabbisogni riportati nell'Allegato 1, considerando seguenti parametri di input.

	R	iscaldament	0	Raffrescamento			
Terminale di	T acqua	T acqua	ΔΤ	T acqua	T acqua	ΔΤ	
emissione	ingresso	uscita	acqua	ingresso	uscita	acqua	
	[°C]	[°C]	[°C]	[°C]	[°C]	[°C]	
Radiante a soffitto	45	40	5	15	20	5	
Radiante a pavimento	45	40	5	15	20	5	
Ventilconvettore	45	40	5	7	12	5	
Uta	45	40	5	7	12	5	

La copertura dei carichi termici e frigoriferi legati al trattamento dell'aria è demandata alle batterie delle unità di trattamento dell'aria (vedi paragrafo 4). La modulazione della temperatura dell'aria primaria consentirà, al verificarsi di condizioni di carico estreme, di

integrare la potenza erogata dai terminali di emissione al fine di coprire i picchi di richiesta e ridurre i tempi di risposta dell'impianto.

3.1. Dimensionamento delle pompe di circolazione

Si prevede l'installazione di due pompe di circolazione. La prima nel circuito primario tra i pozzi e i generatori e la seconda nel circuito secondario tra l'accumulo e i collettori. Per il dimensionamento è stato considerato il circuito più sfavorito ovvero quello relativo al terminale di emissione più lontano dalla centrale termica. In allegato si riportano in dettaglio i calcoli delle caratteristiche delle pompe di circolazione.

In sintesi le caratteristiche sono:

POMPA	PORTATA [kg/s]	PREVALENZA [kPa]	MODELLO TIPO GRUNDFOS
Pompa P0 (circuito primario)	18	200	TPED 65-550
Pompa P1 (circuito secondario)	16	100	TPE3D 80-180
Pompa P2 (circuito secondario)	5	100	TPE3D 80-150

4. Impianto di ventilazione meccanica

Le UTA sono differenziate in funzione della zona che devono servire.

Le UTA per la ventilazione meccanica sono state dimensionate in relazione alle portate d'aria previste dalla norma UNI 10339. Più nel dettaglio sono stati considerati i valori seguenti per persona:

- Aule scuola primaria: Q_{op}= 5* 10⁻³ m³/s;
- Aule scuola media inferiore: Q_{op}= 6* 10⁻³ m³/s;
- Aule laboratorio: Q_{op}= 7* 10⁻³ m³/s;
- Refettori: Q_{op}= 10* 10⁻³ m³/s;
- Uffici: $Q_{op} = 6^* \cdot 10^{-3} \text{ m}^3/\text{s}$.

Considerando, a favore di sicurezza, un affollamento massimo di 30 persone per aula, l'impianto di ventilazione meccanica dovrà garantire le seguenti portate d'aria:

- 540 m³/h per le aule della scuola primaria;
- 648 m³/h per le aule della scuola media inferiore;
- 756 m³/h per i laboratori.

Per quanto riguarda gli uffici degli insegnanti, considerando un affollamento massimo pari a 6 persone dovrà essere garantita una portata d'aria pari a 432 m³/h.

Per quanto riguarda i refettori, per la scuola primaria è stato considerato un affollamento massimo di 194 persone pertanto dovrà essere garantita una portata d'aria pari a 6'984 m³/h mentre per la scuola media è stato considerato un affollamento massimo di 173 persone e di conseguenza dovrà essere garantita una portata d'aria pari a 6'228 m³/h.

Per quanto riguarda l'auditorium è stato considerato un affollamento di 200 persone pertanto la portata d'aria da garantire è di 3'960 m³/h.

Per quanto riguarda le palestre, il calcolo della portata d'aria, è stato effettuato in accordo alla norma CONI pertanto le portate d'aria da garantire sono le seguenti:

- 1'552 m³/h per la palestra della scuola primaria;
- 6'634 m³/h per la palestra della scuola media.

Si riporta di seguito le tabelle di trasformazione dell'aria all'interno delle UTA.

Caso invernale

		Α	В	ı	II	III	IV	V	VI
		aria esterna	aria interna	recupero di calore	miscelazione con aria di	preriscaldamento	raffreddamento e	umidificazione ad acqua	post-riscaldamento
		aria esterria	ana interna	recupero ur calore	ricircolo	prenscaldamento	deumidificazione	(saturazione)	(punto di immissione)
Т	[°C]	-7,0	20,0	14,6	14,6	23,2	23,2	9,3	20,1
HR	[%]	76%	50%	17%	17%	10%	10%	100%	50%
x	[g/kg]	1,69	7,26	1,69	1,69	1,69	1,69	7,26	7,26
h	[kJ/kg]	-2,83	38,53	18,95	18,95	27,61	27,61	27,61	38,64
p _{vs}	[kPa]	0,36	2,34	1,66	1,66	2,84	2,84	1,17	2,35
p _v	[kPa]	0,27	1,17	0,27	0,27	0,27	0,27	1,17	1,17
p _{atm}	[kPa]	101,33	101,33	101,33	101,33	101,33	101,33	101,33	101,33

Caso estivo

		Α	В	I	II	III	IV	V	VI
		aria esterna	aria interna	recupero di calore	miscelazione con aria di ricircolo	preriscaldamento	raffreddamento a saturazione	deumidificazione (condensa)	post-riscaldamento (punto di immissione)
т	[°C]	32,0	26,0	27,2	27,2	27,2	20,3	14,8	26,0
HR	[%]	50%	50%	66%	66%	66%	100%	100%	50%
x	[g/kg]	14,95	10,49	14,95	14,95	14,95	14,95	10,49	10,49
h	[kJ/kg]	70,42	52,88	65,47	65,47	65,47	58,31	41,38	52,88
p _{vs}	[kPa]	4,76	3,36	3,61	3,61	3,61	2,38	1,68	3,36
p _v	[kPa]	2,38	1,68	2,38	2,38	2,38	2,38	1,68	1,68
p _{atm}	[kPa]	101,33	101,33	101,33	101,33	101,33	101,33	101,33	101,33

Nella tabella successiva si riassumono le potenze richieste alle batterie delle UTA dei 3 edifici.

Edificio A (Scuola secondaria di primo grado)

		ESTATE					
Locale	Portata	Prer	Umid	Umid	Post	Raff	Post
	m3/h	kW	g/s	kg/h	kW	kW	kW
UTA M.1	3286	8,3	5,8	20,86	12	26,4	12,6
UTA M.2	3432	8,6	6,1	21,79	12,5	27,6	13,2
UTA M.3	4512	11,3	8,0	28,65	16,4	36,2	17,3
UTA M.4	3432	8,6	6,1	21,79	12,5	27,2	13,2
UTA M.5	6634	16,7	11,7	42,12	24,2	53,3	25,4
UTA M.6	6228	16,7	11,7	42,12	24,1	50,0	23,9

Edificio B (Scuola primaria) _DA FARE

		ESTATE					
Locale	Portata	Prer	Umid	Umid	Post	Raff	Post
	m3/h	kW	g/s	kg/h	kW	kW	kW
UTA P.1	2892	7,3	5,1	18,36	10,5	23,2	11,1
UTA P.2	3092	7,8	5,5	19,63	11,3	24,8	11,8
UTA P.3	3864	9,7	6,8	24,53	14,1	31,0	14,8
UTA P.4	3972	10,0	7,0	25,22	14,5	31,9	15,2
UTA P.5	2309	5,8	4,1	14,66	8,4	18,5	8,8
UTA P.6	6984	17,6	12,3	44,34	25,4	56,1	26,8

Edificio C (Auditorium)

	INVERNO					ESTATE	
Locale	Portata	Prer	Umid	Umid	Post	Raff	Post
	m3/h	kW	g/s	kg/h	kW	kW	kW
UTA M.5	3900	9,8	6,9	24,76	14,2	22,1	10,5

4.1. Dimensionamento della rete di distribuzione

La rete aeraulica di distribuzione dell'aria è stata dimensionata considerando una portata come definita nei precedenti paragrafi e una velocità di passaggio non superiore a 3 m/s peri condotti secondari e 5 m/s per i condotti primari.

L'immissione dell'aria di rinnovo avverrà tramite bocchette a soffitto o a parete; l'estrazione dell'aria esausta avverrà tramite griglie di ripresa a parete o a soffitto poste nei corridoi, nelle aule e nei laboratori.

4.2. Estrazione dai servizi

L'aria estratta dai bagni sarà portata in copertura mediante dei condotti di espulsioni singoli per ciascun servizio. La portata e il diametro delle tubazioni di estrazione sono stati dimensionati secondo quanto indicato dalla norma UNI 10339.

I principali valori di input e risultati del dimensionamento risultano:

- Portata minima continua garantita per estrazione WC: 8 vol/h;
- velocità fluido in condotti: <5 m/s.

5. Dimensionamento dei generatori termofrigoriferi

La potenza totale richiesta al sistema di generazione di calore (pompe di calore acquaacqua) per la climatizzazione è pari alla somma dei fabbisogni termici per trasmissione e per il trattamento dell'aria. Per il dimensionamento del generatore sono stati utilizzati opportuni coefficienti di contemporaneità legati principalmente allo spostamento delle persone tra aree aule, refettori e palestra.

Sommando i fabbisogni termici, di cui ai precedenti paragrafi, e utilizzando i coefficienti di contemporaneità tra i terminali di emissione dell'aria si ottiene:

Edificio A (Scuola secondaria di primo grado)

Potenza termica per trasmissione	64,2 kW
Potenza termica per il trattamento dell'aria	90,3 kW
Potenza termica totale generatore di calore	154,5 kW
Edificio B (Scuola primaria)	
Potenza termica per trasmissione	39,9 kW
Potenza termica per il trattamento dell'aria	85,1 kW
Potenza termica totale generatore di calore	125 kW
Edificio C (Auditorium)	
Potenza termica per trasmissione	6,7 kW
Potenza termica per il trattamento dell'aria	25,4 kW
Potenza termica totale generatore di calore	31,1 kW

Il generatore di calore avrà quindi potenza termica pari a 330 kW con un sovradimensionamento di sicurezza maggiore del 5%.

Allo stesso modo, sommando i fabbisogni frigoriferi di cui ai precedenti paragrafi e utilizzando i coefficienti di contemporaneità tra i terminali di emissione dell'aria si ottiene:

Edificio A (Scuola secondaria di primo grado)

Potenza frigorifera per i carichi termici	37,69 kW
Potenza frigorifera per il trattamento dell'aria	117,7 kW
Potenza frigorifera totale	155,39 kW
Edificio B (Scuola primaria)	
Potenza termica per trasmissione	58,9 kW
Potenza termica per il trattamento dell'aria	111 kW
Potenza frigorifera totale	169,9 kW

Edificio C (Auditorium)

Potenza frigorifera totale	26,24 kW
Potenza termica per il trattamento dell'aria	22,2 kW
Potenza termica per trasmissione	4,04 kW

Il generatore di calore avrà quindi potenza termica pari a 370 kW con un sovradimensionamento di sicurezza maggiore del 5%.

6. Impianto idrico sanitario

Tipo di calcolo

6.1. Dimensionamento pompe di calore per l'acqua calda sanitaria

Il fabbisogno di acqua calda sanitaria è stato determinato secondo la norma UNI 9182:2014 considerando un utilizzo contemporaneo in ogni blocco bagno come riportato di seguito.

Dimensionamento ACS - Appendici F/G UNI 9182:2010

L	medio		_		
	N. apparecchi	Apparecchio	Usi orari	Litri/uso	Consumo orari
			n/h		litri/ora
	0	Vasca da bagno con doccetta a mano	1	180	0
	0	Vasca da bagno senza doccetta	1	110	0
	0	Doccia	1	55	0
	9	Lavabo	3	11	297
	0	Bidet	1	9	0
	0	Lavello di cucina	1	17,5	0
г					

Destinazione d'uso

	<u>^</u>	<u> </u>		
9 Lavab	0	3	11	297
0 Bidet		1	9	0
0 Lavell	o di cucina	1	17,5	0
		Consumo totale	litri/ora	297
			f1	1
			f2	1
			f3	1
Massimo consumo orario cor	temporaneo di acqua calda a 40°C (F.2)	q_{M}	litri/ora	297

Temperatura acqua fredda (Tf) 10 °C
Temperatura acqua calda sanitaria (Tm) 35 °C
Temperatura acqua nell'accumulo (Tc) 55 °C
Durata pre-riscaldamento (Pr) 1 ore

Volume dell'ad	cumulo 100	litri	

Si riporta di seguito il dimensionamento per la pompa di calore da installare nel blocco degli spogliatoi della palestra dell'edificio A.

Dimensionamento ACS - Appendici F/G UNI 9182:2010

Tipo di calcolo Destinazione d'uso minimo da norma Ufficio

N. apparecchi	Apparecchio	Usi orari	Litri/uso	Consumo orario
		n/h		litri/ora
0	Vasca da bagno con doccetta a mano	1	160	0
0	Vasca da bagno senza doccetta	1	100	0
14	Doccia	1,5	50	1050
12	Lavabo	2	10	240
0	Bidet	1	8	0
0	Lavello di cucina	1	15	0
		Consumo totale	litri/ora	1290
			f1	1
			f2	1
			f3	1
Massimo consumo o	rario contemporaneo di acqua calda a 40°C (F.2)	q_{M}	litri/ora	1.290

Temperatura acqua fredda (Tf)
Temperatura acqua calda sanitaria (Tm)
Temperatura acqua nell'accumulo (Tc)
Durata pre-riscaldamento (Pr)

Volume dell'accumulo 500 litri

10

45

60

1

°C

°C

°C

ore

Si riporta di seguito il dimensionamento per la pompa di calore da installare nel blocco degli spogliatoi della palestra dell'edificio B.

Dimensionamento ACS - Appendici F/G UNI 9182:2010

Tipo di calcolo Destinazione d'uso medio Ufficio

N. apparecchi	Apparecchio	Usi orari	Litri/uso	Consumo orario
		n/h		litri/ora
0	Vasca da bagno con doccetta a mano	1	180	0
0	Vasca da bagno senza doccetta	1	110	0
4	Doccia	2	55	440
6	Lavabo	3	11	198
0	Bidet	1	9	0
0	Lavello di cucina	1	17,5	0
		Consumo totale	litri/ora	638
			f1	1
			f2	1
			f3	1
Massimo consumo o	rario contemporaneo di acqua calda a 40°C (F.2)	\mathbf{q}_{M}	litri/ora	638

Temperatura acqua fredda (Tf)
Temperatura acqua calda sanitaria (Tm)
Temperatura acqua nell'accumulo (Tc)
Durata pre-riscaldamento (Pr)

10	°C
45	°C
60	°C
1	ore

Volume dell'accumulo 250 litri

6.2. Acqua fredda sanitaria

La rete di adduzione dell'acqua fredda sanitaria è stata dimensionata secondo la norma UNI 9182:2014. Il calcolo è stato effettuato secondo il metodo delle Unità di Carico (UC). Le unità di carico corrispondenti ai singoli apparecchi sono le seguenti:

Apparecchio	UC acqua fredda
Lavabo	1,50
Doccia	3
WC a cassetta	5
l avello	2

(Norma UNI 9182:2014 - Prospetto D.2)

La velocità di passaggio dell'acqua all'interno delle tubazioni è prevista non superiore a 2 m/s nella rete di distribuzione primaria e secondaria.

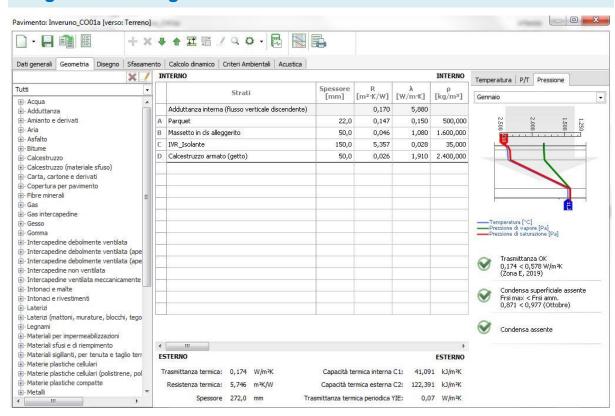
6.3. Acqua calda sanitaria

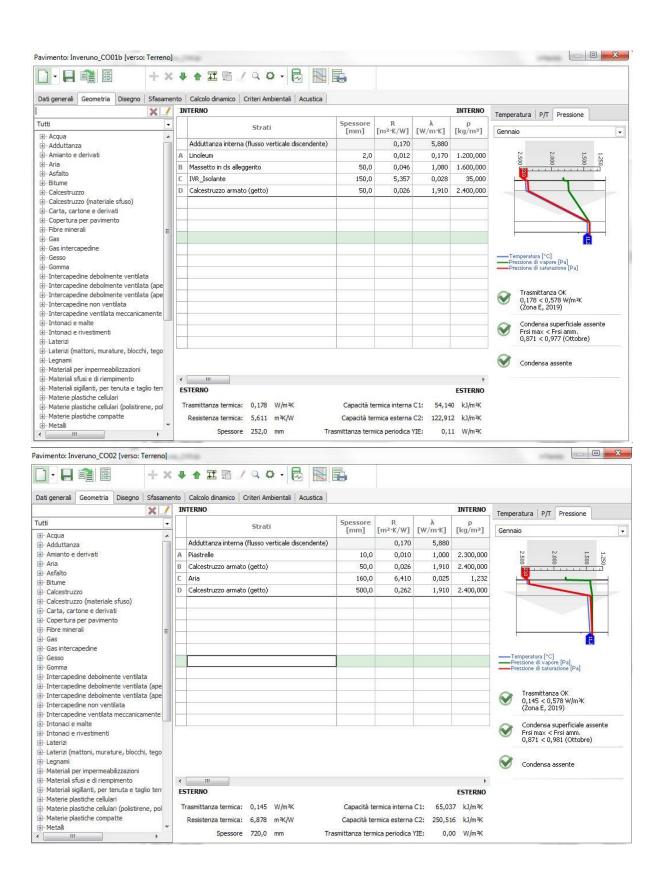
La rete di adduzione dell'acqua calda sanitaria è stata dimensionata secondo la norma UNI 9182:2014. Il calcolo è stato effettuato secondo il metodo delle Unità di Carico (UC). Le unità di carico corrispondenti ai singoli apparecchi sono le seguenti:

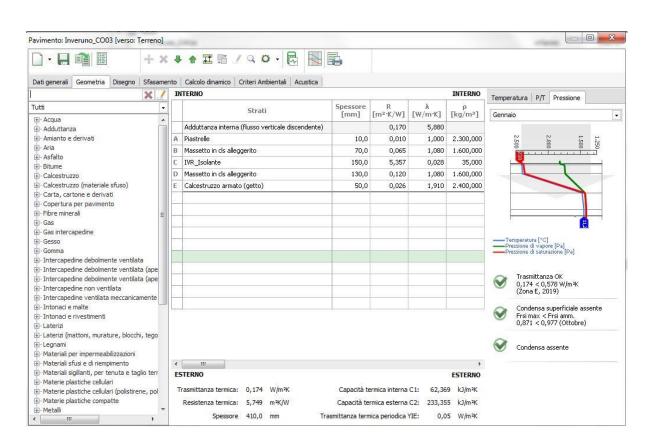
Apparecchio	UC acqua calda
Doccia	3
Lavabo	1,5
Lavello	2

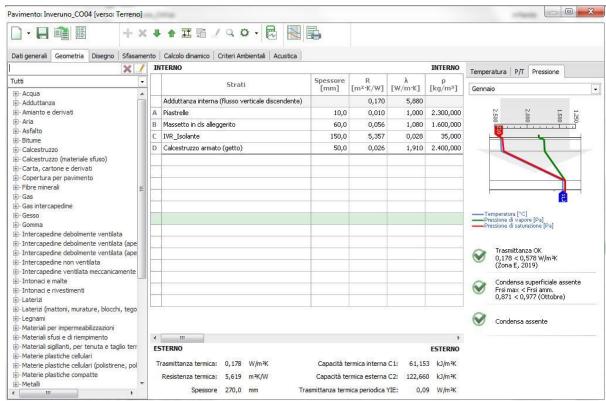
(Norma UNI 9182:2014 - Prospetto D.2)

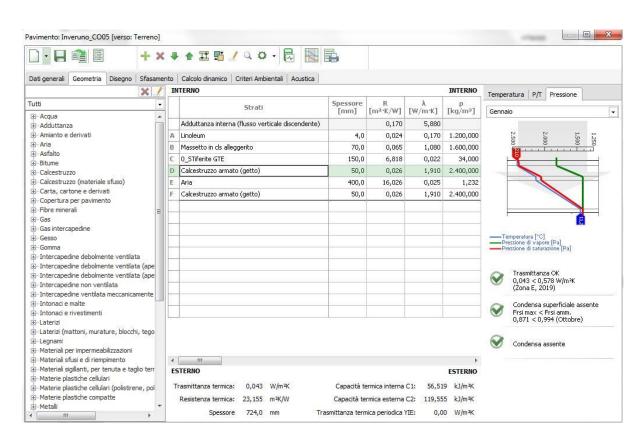
6.4. Scarichi acque reflue nere

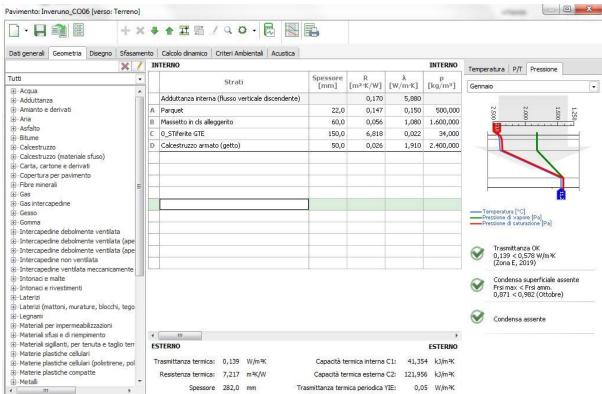

La rete di raccolta delle acque reflue dai servizi igienici e dalle cucine è stata dimensionata secondo la norma UNI EN 12056-2:2001. Il sistema di scarico sarà con ventilazione parallela diretta.

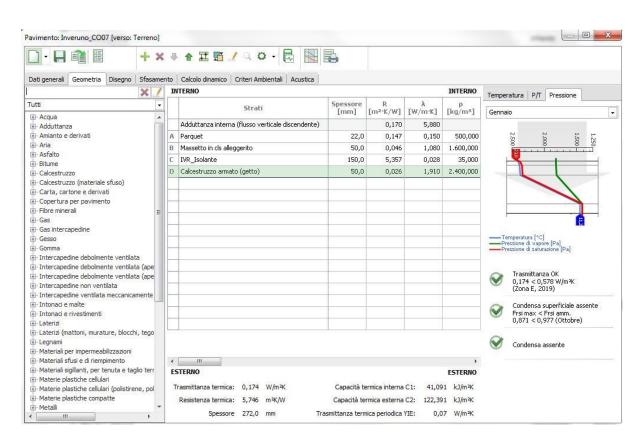

Le unità di scarico (DU) per apparecchio sanitario sono state assunte pari a quelle della tabella seguente, considerando un fattore di riempimento delle tubazioni del 70%. Il coefficiente di frequenza K per il calcolo delle portate è pari a 1, valore indicato dalla norma su citata per utilizzo degli apparecchi molto frequente.

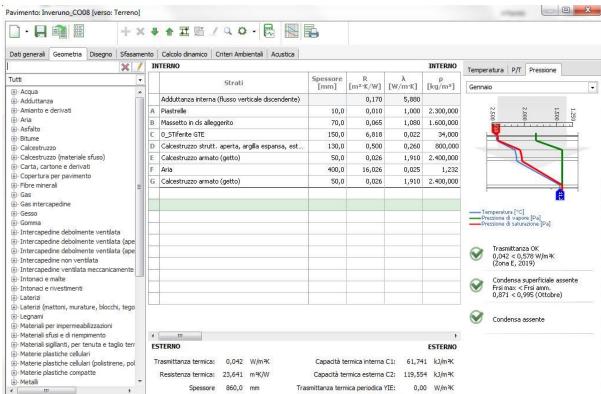

Apparecchio	DU (I/s)
Lavello	0,6
Doccia	0,4
WC a cassetta (9 I)	2,0
Lavabo	0,3
Piletta a pavimento	0,9

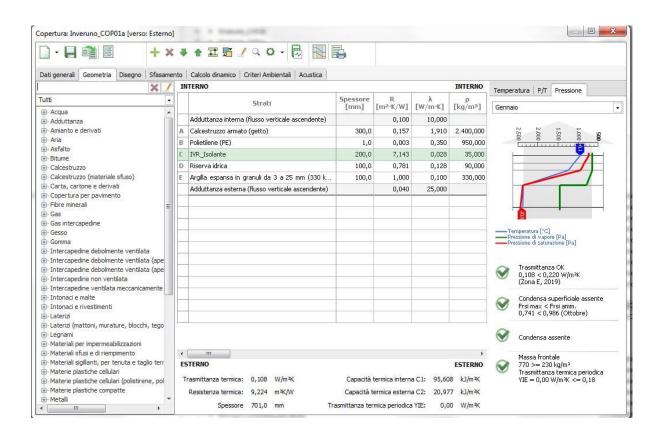

I tratti suborizzontali della rete di raccolta avranno pendenza sempre maggiore o uguale all'1%.

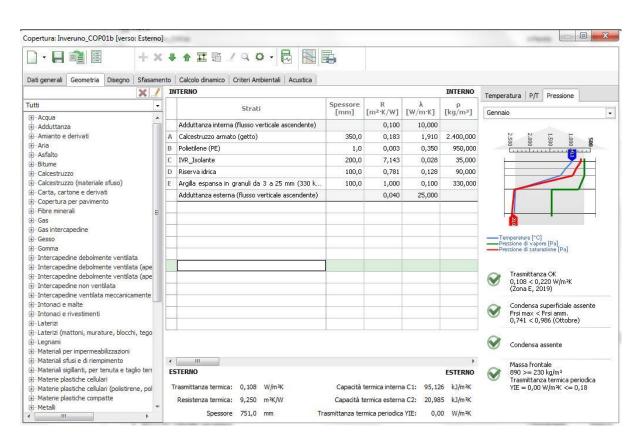

Allegato 1 - Stratigrafie

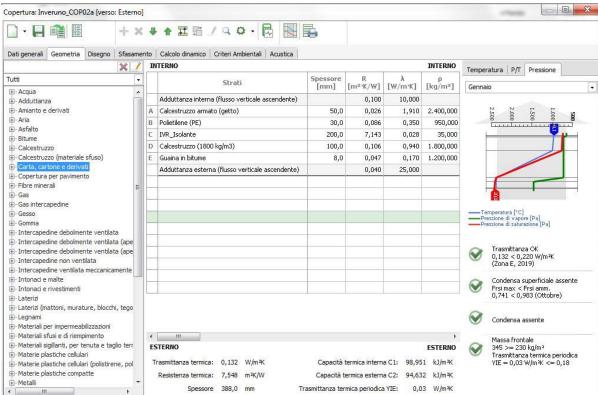


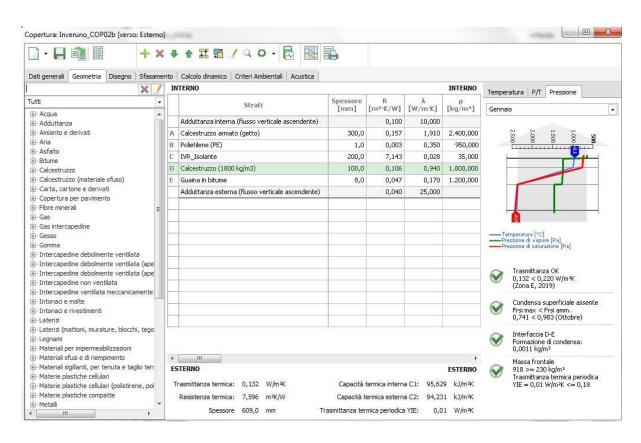


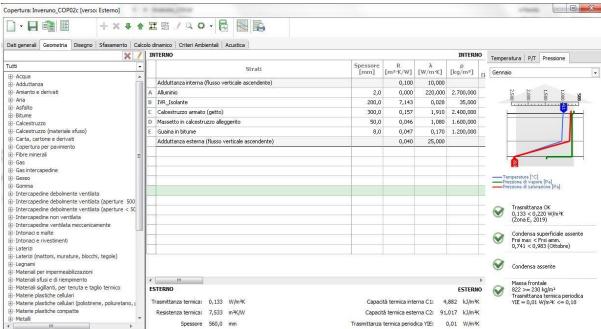


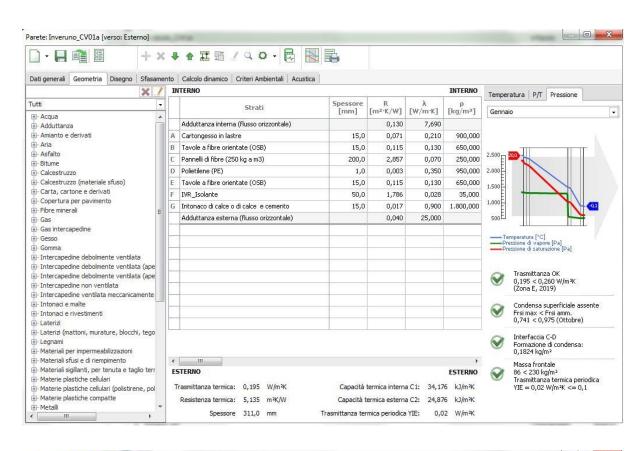


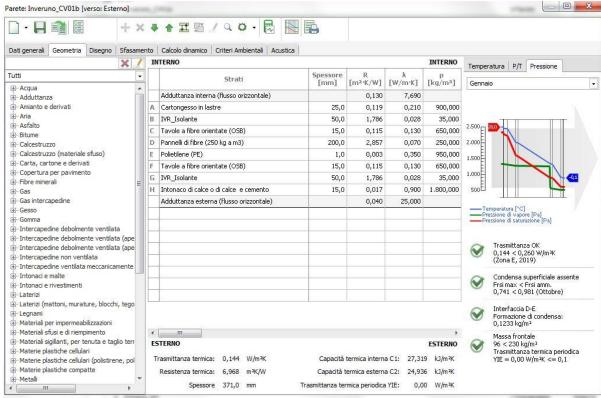


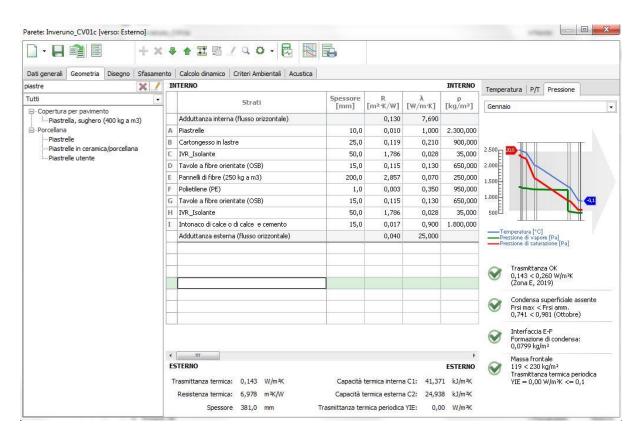


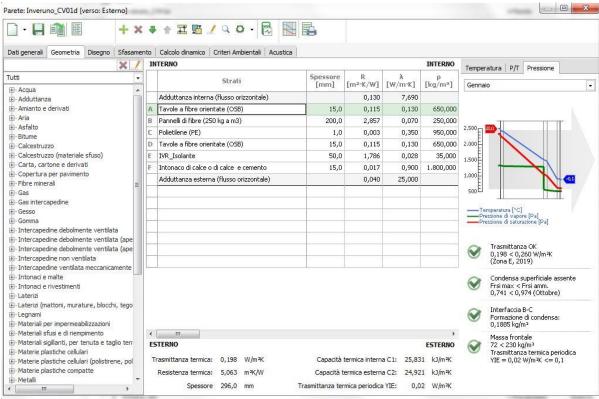


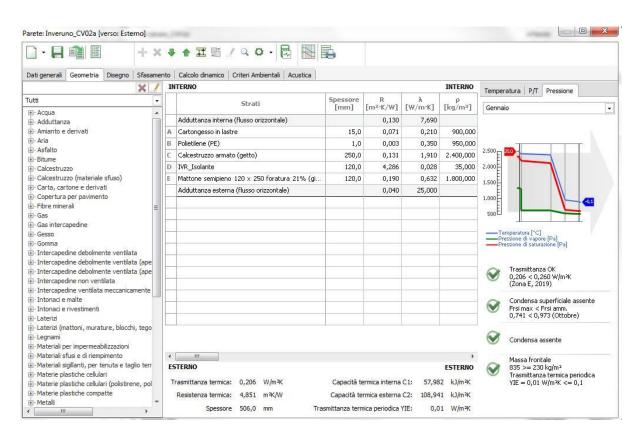


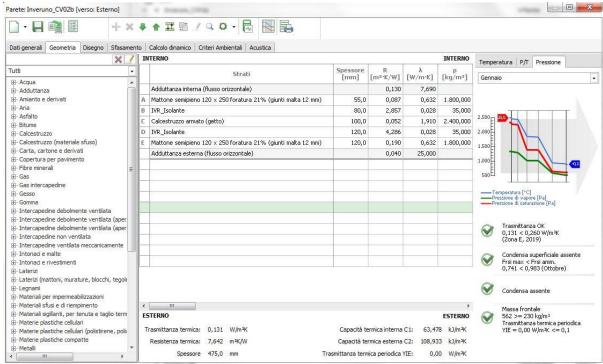


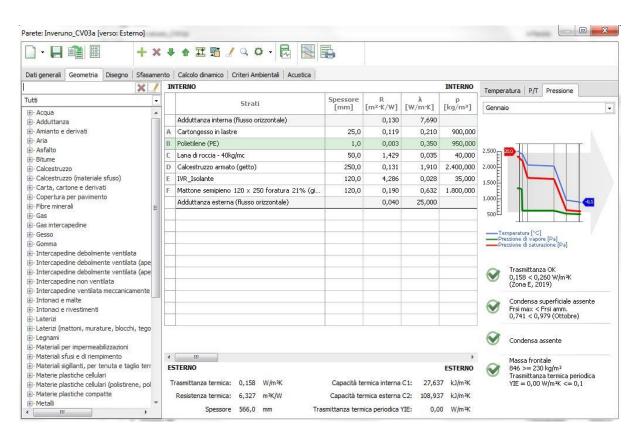


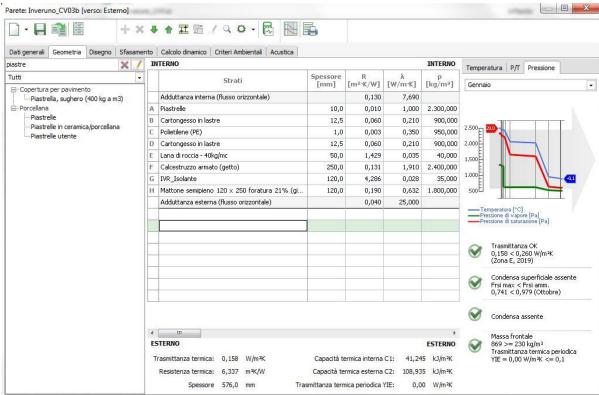


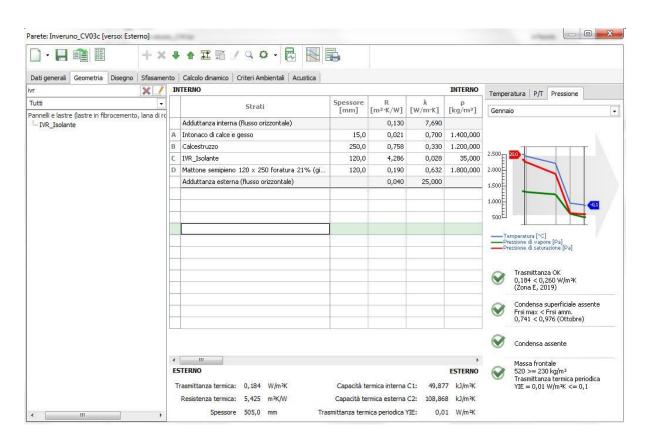


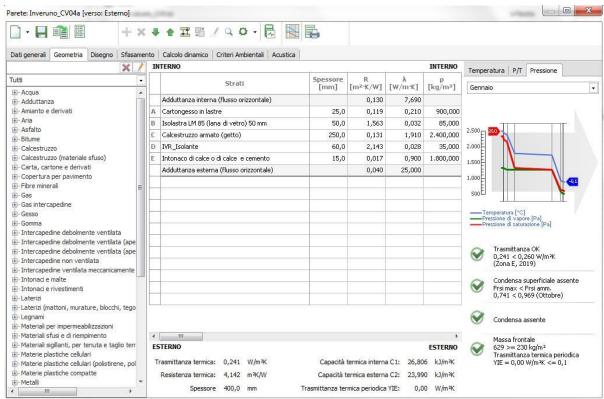


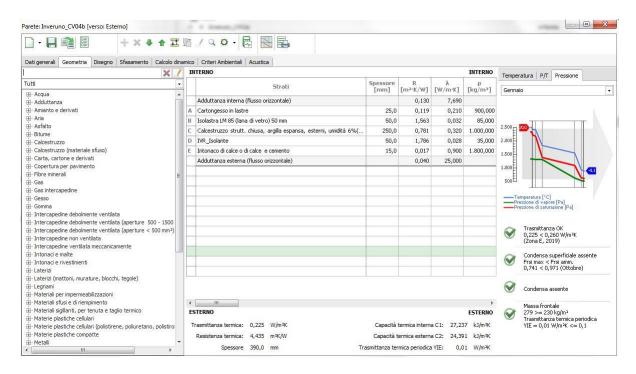


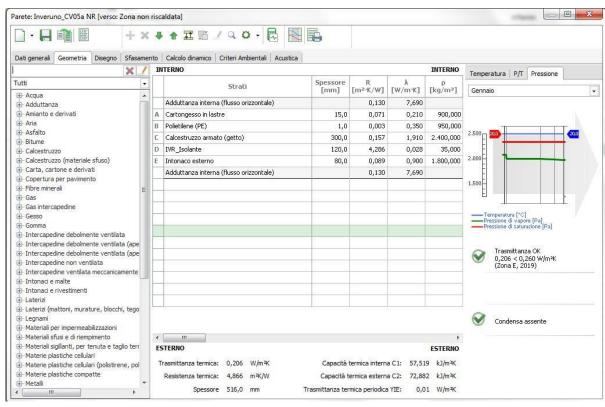


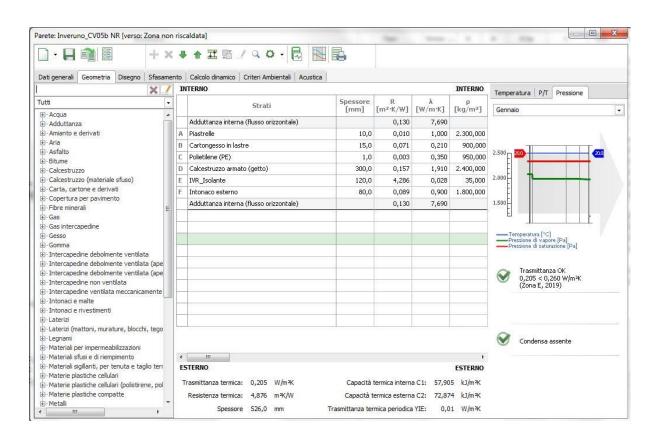


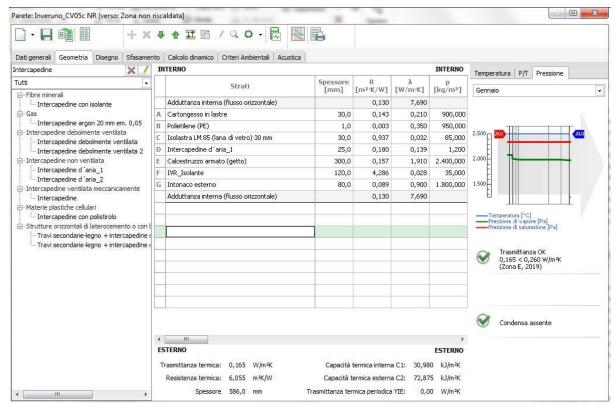


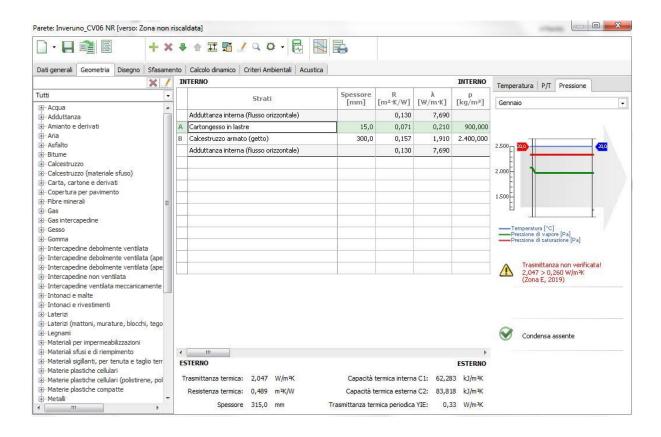












Allegato 2 -	- Dimensiona	mento pom	pe di circo	lazione	

Perdite di carico distribuite 12,7 kPa 12.717,82

			1	alternative	\	↓ alte	rnative ↓]											
Tratto tubo		tubo	circolare	tubo retta	angolare															
n. nome	lunghezza	Ø	Ø interno	larghezza	altezza	portata	potenza	ΔΤ	velocità	materiale	scabrezza	sezione	perimetro	Ø	Q	Reynolds	Mood	v	P. di carico	Perdite di carico
	g	~	~	g								calcolata	calcolato	idraulico	calcolata	,		'	specifiche	distribuite
	m	mm	mm	mm	mm	kg/s	W	°C	m/s		ε mm	mm²	mm	mm	kg/s				Pa/m	Pa
1 Pozzo - centrale	320	6"					357000	5	0,86	tubo nuovo in PE, PVC,	, 0,01	19931	500	159,3	17,1	√ 135787	0,0	ok	39,7	12.717,8
2		6"						5	0,00	tubo nuovo in PE, PVC,	1 '	19931	500	159,3	0,0	× 0	#DIV/0!		#DIV/0!	0,0
3		1" 1/2						5	0,00	tubo nuovo in PE, PVC,	0,01	1419	134	42,5	0,0	× 0	#DIV/0!		#DIV/0!	0,0
4		1"						5	0,00	tubo nuovo in PE, PVC,	, 0,01	611	88	27,9	0,0	× 0	#DIV/0!	,	#DIV/0!	0,0
5		3/4"					0	5	0,00	tubo nuovo in PE, PVC,	0,01	391	70	22,3	0,0	X 0	#DIV/0!		#DIV/0!	0,0
6		1/2"					0	5	0,00	tubo nuovo in PE, PVC,	0,01	219	52	16,7	0,0	× 0	#DIV/0!	,	#DIV/0!	0,0
7		altro ->						1	#DIV/0!		#N/D	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!	,	#DIV/0!	0,0
8		altro ->						1	#DIV/0!		#N/D	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!	,	#DIV/0!	0,0
9		altro ->						1	#DIV/0!		#N/D	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!		#DIV/0!	0,0
10		altro ->						1	#DIV/0!		#N/D	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!	,	#DIV/0!	0,0
11		altro ->						1	#DIV/0!		#N/D	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!		#DIV/0!	0,0
12		altro ->						1	#DIV/0!		#N/D	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!		#DIV/0!	0,0
13		altro ->						1	#DIV/0!		#N/D	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!		#DIV/0!	0,0
14		altro ->						1	#DIV/0!		#N/D	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!	,	#DIV/0!	0,0
15		altro ->						1	#DIV/0!		#N/D	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!		#DIV/0!	0,0
16		altro ->						1	#DIV/0!		#N/D	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!	į	#DIV/0!	0,0
17		altro ->						1	#DIV/0!		#N/D	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!		#DIV/0!	0,0
18		altro ->						1	#DIV/0!		#N/D	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!		#DIV/0!	0,0
19		altro ->						1	#DIV/0!		#N/D	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!		#DIV/0!	0,0
20		altro ->						1	#DIV/0!		#N/D	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!		#DIV/0!	0,0
21		altro ->						1	#DIV/0!		#N/D	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!		#DIV/0!	0,0
22		altro ->						1	#DIV/0!		#N/D	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!		#DIV/0!	0,0
23		altro ->						1	#DIV/0!		#N/D	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!		#DIV/0!	0,0
24		altro ->						1	#DIV/0!		#N/D	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!		#DIV/0!	0,0
_ 25		altro ->	•					1	#DIV/0!		#N/D	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!		#DIV/0!	0,0

Perdi	te di carico conc	entrate						65,4 kPa				65374						
n. ı	nome tratto	descrizione elemento	n.	PDC nota		ξ Caleffi		concentrate	o o votto visti sh	a a a a a a a a a a a a a a a a a a a	ha nas navdita a		unua (h. avi	tala		PdC distribuite	12,7 kPa	
				Pa	m/s		mm	c.a. Pa	r/a h	b/a h	he per perdite o	b/a v	interno	larghezza [mm]	altozza	Prevalenza totale	65,4 kPa 78,1 kPa	
1	Pozzo - centrale	ingresso scambiatore	1	50000	0,86	1,00	1 37	33 50.366,06	0,00	0,00	0,00	150,00	0	0	0	Portata	17,05685619 H	kg/s
1	Pozzo - centrale	uscita scambiatore			0,86	0,50	0 0,	0,00	0,00	0,00	0,00	150,00	0	0	0	Potenza resa al fluido	1332,0 \	W
1	Pozzo - centrale	curva stretta 90°	5		0,86	0,80	4 149	32 1.464,23	0,00	0,00	0,00	150,00	0	0	0	Rendimento	85%	
1	Pozzo - centrale	valvola	6		0,86	6,00	36 134	,87 13.178,03	0,00	0,00	0,00	150,00	0	0	0			
1	Pozzo - centrale	valvola non ritorno	1		0,86	1,00	1 37	33 366,06	0,00	0,00	0,00	150,00	0	0	0	Pomp	a P0	
3	0	valvola	1		0,00	6,00	6 0,	0,00	#N/D	#N/D	#N/D	#N/D	#N/D	#N/D	#N/D	Prevalenza	80 kPa	
4	0	valvola			0,00	6,00	0 0,	0,00	#N/D	#N/D	#N/D	#N/D	#N/D	#N/D	#N/D	Portata	18 kg/s	
5	0	valvola			0,00	6,00	0 0,	0,00	#N/D	#N/D	#N/D	#N/D	#N/D	#ND	#N/D	Potenza assorbita	1570 W	

64,9 kPa Perdite di carico distribuite

	Tratto tubo		tubo	↓ a	alternative tubo retta	↓ angolare	↓ alte	ernative ↓													
n.	nome	lunghezza	Ø	Ø interno	larghezza	altezza	portata	potenza	ΔΤ	velocità	materiale	scabrezza	sezione calcolata	perimetro calcolato	Ø idraulico	Q calcolata	Reynolds	Моо	dy	P. di carico specifiche	Perdite di carico distribuite
		m	mm	mm	mm	mm	kg/s	W	°C	m/s		ε mm	mm²	mm	mm	kg/s				Pa/m	Pa
	A	_	0"					047000	_	0.70	to be a second in DE DVO	0.04	10001	500	450.0	45.4	A00570	0.0	-1.	00.0	400.0
1	Accumulo - collettore Accumulo collettore	5	6" 6"					317000 317000	5	0,76	tubo nuovo in PE, PVC,	0,01	19931 19931	500 500	159,3	15,1	√ 120573	0,0	ok ok	32,0	160,2 160,2
2	tratto coll-ventilconv	240	1" 1/2					30000	5	0,76	tubo nuovo in PE, PVC, tubo nuovo in PE, PVC,	0,01 0,01	1419	134	159,3 42,5	15,1 1,4	√ 120573 √ 42770	0,0 0,0	ok ok	32,0 268,9	64.541,9
J	tratto con-ventinconv	240	1"					30000	5	1,01	tubo nuovo in PE, PVC,	0,01	611		27,9		× 42770	#DIV/0!	UK	#DIV/0!	,
5			3/4"					0	5	0,00	tubo nuovo in PE, PVC,	0,01	391	88 70	22,3	0,0 0,0	X 0	#DIV/0! #DIV/0!		#DIV/0!	0,0 0,0
6			1/2"					0	5	0,00	tubo nuovo in PE, PVC,	0,01	219	52	16,7	0,0	× 0	#DIV/0!		#DIV/0!	0,0
7			altro ->						1	#DIV/0!	tubo nuovo iiri E, i vo,	#N/D	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!		#DIV/0!	0,0
8			altro ->						1	#DIV/0!		#ND	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!		#DIV/0!	0,0
9			altro ->						1	#DIV/0!		#ND	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!		#DIV/0!	0,0
10			altro ->						1	#DIV/0!		#ND	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!		#DIV/0!	0,0
11			altro ->						1	#DIV/0!		#ND	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!		#DIV/0!	0,0
12			altro ->						1	#DIV/0!		#N/D	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!		#DIV/0!	0,0
13			altro ->						1	#DIV/0!		#N/D	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!		#DIV/0!	0,0
14			altro ->						1	#DIV/0!		#N/D	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!		#DIV/0!	0,0
15			altro ->						1	#DIV/0!		#N/D	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!		#DIV/0!	0,0
16			altro ->						1	#DIV/0!		#N/D	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!		#DIV/0!	0,0
17			altro ->						1	#DIV/0!		#N/D	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!		#DIV/0!	0,0
18			altro ->						1	#DIV/0!		#N/D	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!		#DIV/0!	0,0
19			altro ->						1	#DIV/0!		#N/D	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!		#DIV/0!	0,0
20			altro ->						1	#DIV/0!		#N/D	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!		#DIV/0!	0,0
21			altro ->						1	#DIV/0!		#N/D	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!		#DIV/0!	0,0
22			altro ->						1	#DIV/0!		#N/D	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!		#DIV/0!	0,0
23			altro ->						1	#DIV/0!		#N/D	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!		#DIV/0!	0,0
24			altro ->						1	#DIV/0!		#N/D	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!		#DIV/0!	0,0
25			altro ->						1	#DIV/0!		#N/D	0	0	#DIV/0!	0,0	#DIV/0!	#DIV/0!		#DIV/0!	0,0

Perdite di carico concentrate								31,3 kPa	31268								
n. nome tra	to descrizione elemento	n.	PDC nota	velocità	ξ Caleff	Σξ	Z	Perdite di carico concentrate								PdC distribuite	64,9 kPa
Pa m							mm c.a.	Pa	caratteristiche geometriche per perdite concentrate curve (h=orizzontale; v=verticale)						rticale)	PdC concentrate	31,3 kPa
									r/a h	b/a h	r/a v	b/a v	Ø interno [mm]	larghezza [mm]	altezza [mm]	Prevalenza totale	96,1 kPa
1 Accumu	o - collettore ingresso accumulo	1		0,76	1,00	1	29,43	288,62	0,00	0,00	0,00	150,00	0	0	0	Portata	15,14572384
1 Accumu	o - collettore uscita accumulo	1		0,76	0,50	0,5	14,72	144,31	0,00	0,00	0,00	150,00	0	0	0	Potenza resa al fluido	1456,0
1 Accumu	o - collettore curva stretta 90°	2		0,76	0,80	1,6	47,09	461,80	0,00	0,00	0,00	150,00	0	0	0	Rendimento	85%
1 Accumu	o - collettore valvola	6		0,76	6,00	36	1059,60	10.390,41	0,00	0,00	0,00	150,00	0	0	0		
1 Accumu	o - collettore valvola non ritorno	1		0,76	1,00	1	29,43	288,62	0,00	0,00	0,00	150,00	0	0	0	Pomp	a P1
3 tratto co	I-ventilconv valvola	1	15000	1,01	6,00	6	312,19	18.061,35	0,00	0,00	0,00	150,00	0	0	0	Prevalenza	100 kPa
4	0 ventilcon			0,00	6,00	0	0,00	0,00	#N/D	#N/D	#N/D	#N/D	#N/D	#N/D	#N/D	Portata	16 kg/s
5	0 valvola			0.00	6,00	0	0.00	0,00	#N/D	#N/D	#N/D	#N/D	#N/D	#N/D	#N/D	Potenza assorbita	1720 W